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Abstract27

Plant breeders and breeders alike seek to develop cultivars with maximal agronomic value.28

The merit of breeding material is often assessed using many, often genetically correlated29

traits. As intervention on one trait will affect the value of another, breeding decisions should30

consider the relationships between traits. With the proliferation of multi-trait genome-wide31

association studies (MTM-GWAS), we can infer putative genetic signals at the multivariate32

scale. However, a standard MTM-GWAS does not accommodate the network structure of33

phenotypes, and therefore does not address how the traits are interrelated. We extended34

the scope of MTM-GWAS by incorporating phenotypic network structures into GWAS us-35

ing structural equation models (SEM-GWAS). In this network GWAS model, one or more36

phenotypes appear in the equations for other phenotypes as explanatory variables. A salient37

feature of SEM-GWAS is that it can partition the total single nucleotide polymorphism38

(SNP) effects into direct and indirect effects. In this paper, we illustrate the utility of SEM-39

GWAS using biomass, root biomass, water use, and water use efficiency in rice. We found40

that water use efficiency is directly impacted by biomass and water use and indirectly by41

biomass and root biomass. In addition, SEM-GWAS partitioned significant SNP effects in-42

fluencing water use efficiency into direct and indirect effects as a function of biomass, root43

biomass, and water use efficiency, providing further biological insights. These results sug-44

gest that the use of SEM may enhance our understanding of complex relationships between45

GWAS traits.46
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Background47

Elite high-yielding crop varieties are the result of generations of targeted selection for mul-48

tiple characteristics. In many cases, plant and animal breeders alike seek to improve many,49

often correlated, phenotypes simultaneously. Thus, breeders must consider the interaction50

between traits during selection. For instance, genetic selection for one trait may increase or51

decrease the expression of another trait, depending on the genetic correlation between the52

two. While consideration of the genetic correlation between traits is essential in this respect,53

modeling recursive interactions between phenotypes provides important insights for develop-54

ing breeding and management strategies for crops that cannot be realized with conventional55

multivariate approaches alone.. In particular, inferring the structure of phenotypic networks56

from observational data is critical for our understanding of the interdependence of multiple57

phenotypes (Valente et al., 2010; Wang and van Eeuwijk, 2014; Yu et al., 2018).58

Genome-wide association studies (GWAS) have become increasingly popular approaches59

for the elucidation of the genetic basis of economically important traits. They have been60

successful in identifying single nucleotide polymorphism (SNPs) associated with a wide spec-61

trum of phenotypes, including yield, abiotic and biotic stresses, and morphology in plants62

(Huang and Han, 2014). For many studies, multiple, often correlated, traits are recorded on63

the same material, and association mapping is preformed for each trait separately. While64

such approaches may yield powerful, biologically meaningful results, they fail to adequately65

capture the genetic interdependancy among traits and impose limitations on understanding66

the genetic mechanisms underlying a complex system of traits. When multiple phenotypes67

possess correlated structures, multi-trait GWAS (MTM-GWAS), which is the application of68

mutli-trait models (MTM) (Henderson and Quaas, 1976) to GWAS, is a standard approach.69

The rationale behind this is to leverage genetic correlations among phenotypes to increase70

statistical power for the detection of quantitative trait loci, particularly for traits that have71

low heritability or are scarcely recorded.72

While MTM-GWAS is a powerful approach to capture the genetic correlations between73
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traits for genetic inference, it fails to address how the traits are interrelated, or elucidate74

the mechanisms that give rise to the observed correlation. The early work of Sewall Wright75

sought to infer causative relations between correlated variables though path analysis (Wright,76

1921). This seminal work gave rise to structural equation models (SEM), which assesses77

the nature and magnitude of direct and indirect effects of multiple interacting variables.78

Although SEM remains a powerful approach to model the relationships among variables in79

complex systems, its use has been limited in biology.80

Recently, Momen et al. (2018) proposed the SEM-GWAS framework by incorporating81

phenotypic networks and SNPs into MTM-GWAS through SEM (Wright, 1921; Haavelmo,82

1943). In contrast to standard multivariate statistical techniques, the SEM framework opens83

up a multivariate modeling strategy that accounts for recursive (an effect from one pheno-84

type is passed onto another phenotype) and simultaneous (reciprocal) structures among its85

variables (Goldberger, 1972; Bielby and Hauser, 1977). Momen et al. (2018) showed that86

SEM-GWAS can supplement MTM-GWAS, and is capable of partitioning the source of the87

SNP effects into direct and indirect effects, which helps to provide a better understanding88

of the relevant biological mechanisms. In contrast, MTM-GWAS, which does not take the89

network structure between phenotypes into account, estimates overall SNP effects that are90

mediated by other phenotypes, and combines direct and indirect SNP effects.91

Current climate projections predict an increase in the incidence of drought events and92

elevated temperatures throughout the growing season (Wehner et al., 2017). These elevated93

temperatures will drive higher evapotranspirational demands, and combined with the incon-94

sistency of rainfall events, will increase the rate of drought onset and intensity, and impact on95

crop growth and productivity (Challinor et al., 2014; Mann and Gleick, 2015; Otkin et al.,96

2017; Zampieri et al., 2017; Zhao et al., 2017). To counter the effects of climate change97

on agricultural productivity, drought-resilient crops must be developed. However, progress98

towards this goal is often hindered by the complex biological basis of drought tolerance99

(Tuberosa and Salvi, 2006; Sinclair, 2011; Mir et al., 2012; Passioura, 2012). The ability to100
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maintain productivity under limited water availability involves a suite of morphological and101

physiological traits (Passioura, 2012). Among these is the ability to access available water102

and utilize it for growth. Thus, studying traits associated with water capture (e.g. root103

biomass and architecture) and utilization (e.g. water-use efficiency) is essential. However,104

of equal importance is a robust statistical framework that allows these complex traits to be105

analyzed jointly and causal relationships among traits to be inferred.106

In this study, we applied SEM-GWAS and MTM-GWAS to incorporate the phenotypic107

network structures related to shoot and root biomass and to drought responses in rice (Oryza108

sativa L.) from a graphical modeling perspective. Graphical modeling offers statistical in-109

ferences regarding complex associations among multivariate phenotypes. Plant biomass and110

drought stress responses are considered to be interconnected through physiological pathways111

that may be related to each other, requiring the specification of recursive effects using SEM.112

We combined GWAS with two graphical modeling approaches: a Bayesian network was used113

to infer how each SNP affects a focal phenotype directly or indirectly through other pheno-114

types, and SEM was applied to represent the interrelationships among SNPs and multiple115

phenotypes in the form of equations and path diagrams.116
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Materials and Methods117

Experimental data set118

The plant material used in our analysis consisted of a rice diversity panel of n = 357 inbred119

accessions of O. sativa collected from a diverse range of regions, which are expected to120

capture much of the genetic diversity within cultivated rice (Zhao et al., 2011). All lines were121

genotyped with 700,000 SNPs using the high-density rice array from Affymetrix (Santa Clara,122

CA, USA) such that there was approximately 1 SNP every 0.54Kb across the rice genome123

(Zhao et al., 2011; McCouch et al., 2016). We used PLINK v1.9 software (Purcell et al.,124

2007) to remove SNPs with a call rate ≤ 0.95 and a minor allele frequency ≤ 0.05. Missing125

genotypes were imputed using Beagle software version 3.3.2 (Browning and Browning, 2007).126

Finally, 411,066 SNPs were retained for further analysis.127

Phenotypic data128

We analyzed four biologically important traits for drought responses in rice: projected shoot129

area (PSA), root biomass (RB), water use (WU), and water use efficiency (WUE). These130

phenotypes are derived from two separate studies (Campbell et al., 2017a, 2018). The aim131

of the first study was to evaluate the effects of drought on shoot growth (Campbell et al.,132

2018). Here, the diversity panel was phenotyped using an automated phenotyping platform133

in Adelaide, SA, Australia. This new phenotyping technology enables us to produce high-134

resolution spatial and temporal image-derived phenotypes, which can be used to capture135

dynamic growth, development, and stress responses (Berger et al., 2010; Golzarian et al.,136

2011; Campbell et al., 2015, 2017b).137

The plants were phenotyped over a period of 20 days, starting at 13 days after they were138

transplanted into soil and ending at 33 days. Each day, the plants were watered to a specific139

target weight to ensure the soil was completely saturated. The plants were then imaged140

from three angles. These pictures were processed to remove all background objects, leaving141
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just pixels for the green shoot tissue. We summed the pixels from each picture to obtain an142

estimate of the shoot biomass. We refer to this metric as PSA. With this system, we also143

obtained the weights, prior to watering and after watering, for each pot on each day. From144

this data, we estimated the amount of water that is used by each plant. WU was calculated145

as Pot Weight(r−1) − Pot Weight(r), where r is time, and WUE is the ratio of PSA to WU.146

Although this data has not yet been published, a description of the phenotyping system and147

insight into the experimental design can be found in Campbell et al. (2015).148

The aim of the second study was to assess salinity tolerance in the rice diversity panel.149

The plants were grown in a hydroponics system in a greenhouse. Salt stress was imposed150

for two weeks, and destructive phenotyping performed at 28 days after transplantation. A151

number of traits were recorded, including RB. The experimental design of this study is fully152

described in (Campbell et al., 2017a). All the aforementioned phenotypes were measured153

under controlled conditions. The 15th day of imaging was selected for analysis of PSA, WU,154

and WUE, which is equivalent to 28 days after transplantation, so that it matched the age155

at which RB was recorded.156

Multi-trait genomic best linear unbiased prediction157

A Bayesian multi-trait genomic best linear unbiased prediction (MT-GBLUP) model was

used for four traits to obtain posterior means of model residuals as inputs for inferring a

phenotypic network.

y = Xb + Zg + ε,

where y is the vector observations for t = 4 traits, µ is the vector of intercept, X is the158

incidence matrix of covariates, b is the vector of covariate effects, Z is the incidence matrix159

relating accessions with additive genetic effects, g is the vector of additive genetic effects,160

and ε is the vector of residuals. The incident matrix X only included intercepts for the161
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four traits examined in this study. Under the infinitesimal model of inheritance, the g162

and ε were assumed to follow a multivariate Gaussian distribution g ∼ N(0,
∑

g⊗G) and163

ε ∼ N(0,
∑

ε⊗I), respectively, where G is the n×n genomic relationship matrix for genetic164

effects, I is the identify matrix for residuals,
∑

g and
∑

ε are the t × t variance-covariance165

matrices of genetic effects and residuals, respectively, and ⊗ denotes the Kronecker product.166

The G matrix was computed as WW
′
/2

∑m
j=1 pj(1− pj), where W is the centered marker167

incidence matrix taking values of 0 − 2pj for zero copies of the reference allele, 1 − 2pj for168

one copy of the reference allele, and 2− 2pj for two copies of the reference allele (VanRaden,169

2008). Here, pj is the allele frequency at SNP j = 1, · · · ,m. We assigned flat priors for the170

intercept and the vector of fixed effects. The vectors of random additive genetic effects and171

residual effects were assigned independent multivariate normal priors with null mean and172

inverse Wishart distributions for the covariance matrices.173

A Markov chain Monte Carlo (MCMC) approach based on Gibbs sampler was used to174

explore posterior distributions. We used a burn-in of 25,000 MCMC samples followed by175

an additional 150,000 MCMC samples. The MCMC samples were thinned with a factor of176

two, resulting in 75,000 MCMC samples for inference. Posterior means were then calculated177

for estimating model parameters. The MTM R package was used to fit the above regression178

model (https://github.com/QuantGen/MTM).179

Learning structures using Bayesian network180

Networks or graphs can be used to model interactions. Bayesian networks describe condi-181

tional independence relationships among multivariate phenotypes. Each phenotype is con-182

nected by an edge to another phenotype if they directly affect each other given the rest of the183

phenotypes, whereas the absence of edge implies conditional independence given the rest of184

phenotypes. Several algorithms have been proposed to infer plausible structures in Bayesian185

networks, assuming independence among the realization of random variables (Scutari, 2010).186

The estimated residuals from MT-GBLUP were used as inputs, and we applied the Max-Min187
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Parents and Children (MMPC) algorithm from the constraint-based structure learning cat-188

egory to infer the network structure among the four traits examined in this study (Scutari189

et al., 2018). We selected this algorithm because it was suggested in a recent study, Töpner190

et al. (2017), which showed that the constraint-based algorithms performed better for the191

construction of networks than score-based counterparts. This algorithm is similar to the192

inductive causation algorithm (Tsamardinos et al., 2003) that was first used in Valente et al.193

(2010) to infer a phenotypic network. The bnlearn R package was used to learn the Bayesian194

phenotypic network throughout this analysis with mutual information as the test, and the195

statistically significant level set at α = 0.01 (Scutari, 2010). We computed the Bayesian196

information criterion (BIC) score of a network and estimated the strength and uncertainty197

of direction of each edge probabilistically by bootstrapping as described in Scutari and Denis198

(2014). In addition, the strength of the edge was assessed by computing the change in the199

BIC score when that particular edge was removed from the network, while keeping the rest200

of the network intact.201

Multi-trait GWAS202

We used the following MTM-GWAS that does not account for the inferred network structure

by extending the single trait GWAS counterpart of Kennedy et al. (1992) and Yu et al. (2006).

For ease of presentation, it is assumed that each phenotype has null mean.

.y = ws + Zg + ε,

where w is the jth SNP being tested, s represents the vector of fixed jth SNP effect, and g203

is the vector of additive polygenic effect. The aforementioned variance-covariance structures204

were assumed for g and ε. The MTM-GWAS was fitted individually for each SNP, where the205

output is a vector of marker effect estimates for each trait, i.e. ŝ = [ŝPSA, ŝWU, ŝWUE, ŝRB].206

10

.CC-BY 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/553008doi: bioRxiv preprint first posted online Feb. 18, 2019; 

http://dx.doi.org/10.1101/553008
http://creativecommons.org/licenses/by/4.0/


Structural equation model for GWAS207

A structural equation model is capable of conveying directed network relationships among

multivariate phenotypes involving recursive effects. The SEM described in Gianola and

Sorensen (2004) in the context of linear mixed models was extended for GWAS, according

to Momen et al. (2018).

y = Λy + ws + Zg + ε



y1

y2

y3

y4


=



0 0 0 0

I1λPSA→RB 0 0 0

I1λPSA→WU I2λRB→WU 0 0

I1λPSA→WUE I2λRB→WUE I3λWU→WUE 0





y1

y2

y3

y4



+



wj1 0 0 0

0 wj2 0 0

0 0 wj3 0

0 0 0 wj4





sj1

sj2

sj3

sj4



+



Z1 0 0 0

0 Z2 0 0

0 0 Z3 0

0 0 0 Z4





g1

g2

g3

g4


+



ε1

ε2

ε3

ε4


where I is the identity matrix, Λ is the lower triangular matrix of regression coefficients208

or structural coefficients based on the learned network structure from the Bayesian network,209

and the other terms are as defined earlier.210

Note that the structural coefficients Λ determine that the phenotypes which appear in

the left-hand side also appear in the right-hand side, and represent the edge effect size
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from phenotype to phenotype in Bayesian networks. If all elements of Λ are equal to 0,

then this model is equivalent to MTM-GWAS. Gianola and Sorensen (2004) showed that the

reduction and re-parameterization of a SEM mixed model can yield the same joint probability

distribution of observation as MTM, suggesting that the expected likelihoods of MTM and

SEM are the same (Varona et al., 2007). For example, we can rewrite the SEM-GWAS model

as

y = (I−Λ)−1ws + (I−Λ)−1Zg + (I−Λ)−1ε

= θ∗ + g∗ + ε∗

where Var(g∗) ∼ (I − Λ)−1G(I − Λ)
′−1

and Var(ε∗) ∼ (I − Λ)−1R(I − Λ)
′−1

. This trans-211

formation changes SEM-GWAS into MTM-GWAS, which ignores the network relationships212

among traits (Gianola and Sorensen, 2004; Varona et al., 2007). However, Valente et al.213

(2013) stated that SEM allows for the prediction of the effects of external interventions,214

which can be useful for making selection decisions that are not possible with MTM. We215

used SNP Snappy software to perform MTM-GWAS and SEM-GWAS (Meyer and Tier,216

2012). To identify candidate SNPs that may explain direct (in the absence of mediation by217

other traits) and indirect (with intervention and mediation by other traits) effects for each218

trait, the SNPs from MTM-GWAS were ranked according to p-values for each trait. The 20219

most significant SNPs were then selected, and all genes within 200 kb were considered to be220

potential candidate genes.221
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Results222

Trait correlations and network structure223

Multi-phenotypes were split into genetic values and residuals by fitting the MT-GBLUP.224

The estimates of genomic and residual correlations among the four traits measured in this225

study are shown in Table 1. Correlations between all traits ranged from 0.48 to 0.92 for226

genomics and −0.13 to 0.83 for residuals. The estimated genomic correlations can arise227

from pleiotropy or linkage disequilibrium (LD). Although pleiotropy is the most durable and228

stable source of genetic correlations, LD is considered to be less important than pleiotropy229

because alleles at two linked loci may become non-randomly associated by chance and be230

distorted through recombination (Gianola et al., 2015; Momen et al., 2017).231

We postulated that the learned networks can provide a deeper insight into relationships232

among traits than simple correlations or covariances. Figure 1 shows a network structure233

inferred using the MMPC algorithm. This is a fully recursive structure because there is at234

least one incoming or outgoing edge for each node. Unlike the MTM-GWAS model, the235

inferred graph structure explains how the phenotypes may be related to each other either236

directly or indirectly mediated by one or more variables. We found a direct dependency237

between PSA and WUE, which can also be mediated by WU. A direct connection was also238

found between RB and WU, and WU and WUE.239

Measuring the strength of probabilistic dependence for each arc is crucial in Bayesian240

network learning (Scutari and Denis, 2014). As shown in Figure 1, the strength of each arc241

was assessed with 2,500 bootstrap samples with a significance level at α = 0.01. The labels242

on the edges indicate the proportion of bootstrap samples supporting the presence of the243

edge and the proportion supporting the direction of the edges are provided in parentheses.244

Learned structures were averaged with a strength threshold of 85% or higher to produce a245

more robust network structure. Edges that did not meet this threshold were removed from246

the networks. In addition, we used BIC as goodness-of-fit statistics measuring how well the247
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paths mirror the dependence structure of the data (Table 2). The BIC assign higher scores248

to any path that fit the data better. The BIC score reports the importance of each arc by its249

removal from the learned structure. We found that removing PSA → WUE resulted in the250

largest decrease in the BIC score, suggesting that this path is playing the most important251

role in the network structure. This was followed by WU → WUE, RB → WU, and PSA →252

WU.253

Structural equation coefficients254

The inferred Bayesian network among PSA, RB, WU, and WUE in Figure 1 was modeled

using a set of structural equations to estimate SEM parameters and SNP effects, as shown

in Figure 2, which can be statistically expressed as

y1PSA
= wjsj(y1PSA

) + Z1g1 + ε1

y2RB
= wjsj(y2RB

) + Z2g2 + ε2

y3WU
= λ13y1PSA

+ λ23y2RB
+ wjsj(y3WU

) + Z3g3 + ε3

= λ13[wjsj(y1PSA
) + Z1g1 + ε1] + λ23[wjsj(y2RB

) + Z2g2 + ε2] + wjsj(y3WU
) + Z3g3 + ε3

y4WUE
= λ14y1PSA

+ λ34y3WU
+ wjsj(y4WUE

) + Zg + ε4

= λ14[wjsj(y1PSA
) + Z1g1 + ε1]

+ λ34{λ13[wjsj(y1PSA
) + Z1g1 + ε1] + λ23[wjsj(y2RB

) + Z2g2 + ε2] + wjsj(y3WU
) + Z3g3 + ε3}

+ wjsj(y4WUE
) + Zg + ε4.

The corresponding estimated Λ matrix is255

Λ =



0 0 0 0

0 0 0 0

λ13PSA→WU
λ23RB→WU

0 0

λ14PSA→WUE
0 λ34WU→WUE

0


.
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Table 3 represents the magnitude of estimated structural path coefficients: λ13, λ23, λ14,256

and λ34 for PSA on WU, RB on WU, PSA on WUE, and WU on WUE, respectively.257

The structural coefficients (λii′) describe the rate of change of trait i with respect to trait258

i
′
. The largest magnitude of the structural coefficient was 1.339, which was estimated for259

PSA→WUE, whereas the lowest was 0.005, which was estimated for RB→WU. The WU→260

WUE relationship has a negative path coefficient, whereas the remainder were all positive.261

Interpretation of SNP effects262

We implemented SEM-GWAS as an extension of the MTM-GWAS method for analysis of263

the joint genetic architecture of the four measured traits, to partition SNP effects into direct264

and indirect (Alwin and Hauser, 1975). The results of the decomposition of SNP effects are265

discussed for each trait separately below. Because the network only revealed indirect effects266

for WU and WUE, we focused on these traits for candidate gene discovery.267

Projected Shoot Area (PSA): Figure 3 shows a Manhattan plot of SNP effects on the PSA.

According to the path diagram, there is no intervening trait or any mediator variable for

PSA (Figure 2). It is possible that the PSA architecture is only influenced by the direct

SNP effects, and is not affected by any other mediators or pathways. Hence, the total effect

of jth SNP on PSA is equal to its direct effects.

Directsj→y1PSA
= sj(y1PSA

)

Totalsj→y1PSA
= Directsj→y1PSA

= sj(y1PSA
)

Root Biomass (RB): No incoming edges were detected for RB, resulting in a similar pattern

to PSA, which suggests that SNP effects on RB were not mediated by other phenotypes. As
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shown in Figure 4, a Manhattan plot for RB consists of direct and total effects.

Directsj→y2RB
= sj(y2RB

)

Totalsj→y2RB
= Directsj→y2RB

= sj(y2RB
)

Water use (WU): Based on Figure 2, a total single SNP effect on WU is attributable to two

mediators, as it has two incoming edges: PSA and RB. Thus, the SNP effects transmitted

from PSA and RB also contribute to the total SNP effects on WU. Under these conditions,

the estimated total SNP effects for WU cannot be simply described as the direct effect

of a given SNP, since the indirect effects of PSA and RB must also be considered. This

is different to MTM-GWAS, which does not distinguish between the effects mediated by

mediator phenotypes, and only captures the overall SNP effects. Here it should be noted

that the extent of SNP effects on PSA and RB are controlled by the structural equation

coefficients λ13 and λ23. Figure 5 shows a Manhattan plot of SNP effects on WU. We found

that the indirect RB → WU path had the least impact on overall effects, whereas indirect

PSA → WU path had almost the same contribution as the direct SNP effects.

Directsj→y3WU
= sj(y3WU

)

Indirect(1)sj→y3WU
= λ13sj(y1PSA

)

Indirect(2)sj→y3WU
= λ23sj(y2RB

)

Totalsj→y2WU
= Directsj→y2WU

+ Indirect(1)sj→y3WU
+ Indirect(2)sj→y3WU

= sj(y3WU
) + λ13sj(y1PSA

) + λ23sj(y2RB
)

Water Usage Efficiency (WUE): The overall SNP effects for WUE can be partitioned into268

one direct and four indirect genetic signals (Figure 2). WUE is the only phenotype trait269

that does not have any outgoing path to other traits. According to Figure 6, the extents of270
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the SNP effects among the four indirect paths were 1) RB → WUE mediated by WU, 2)271

PSA→WUE mediated by WU, 3) WU→WUE, and 4) PSA→WUE, in increasing order.272

We found that the SNP effect transmitted through RB had the smallest effect on the WUE,273

suggesting that modifying the size of the QTL effect for RB may not have a noticeable effect274

on WUE, whereas a change in PSA had a noticeable effect on WUE. The magnitude of the275

relationship between RB and WUE is proportional to the product of structural coefficients276

λ23 × λ34 = 0.005 × −0.455. PSA influenced WUE via two indirect paths, and strongly277

depends on the structural coefficients λ14 = 1.339 and λ13λ34 = 0.767×−0.455 for PSA →278

WUE and PSA → WU → WUE, respectively. It should be noted that the indirect effect279

transmitted through PSA → WUE was greater than the direct effects of a given SNP on280

WUE. This is because the structural coefficient between WU and WUE has a negative sign,281

resulting in transmitted indirect SNP effects that can change the sign and magnitude of the282

total effect on WUE, even from positive values to negative values. However, this indicates283

that the modification and selection of plants for WU may impact WUE, even for the opposite284

direction.285

The direct and indirect effects are summarized with the following equation:

Directsj→y4WUE
= sj(y4WUE

)

Indirect(1)sj→y4WUE
= λ14sj(y1PSA

)

Indirect(2)sj→y4WUE
= λ34sj(y3WU

)

Indirect(3)sj→y4WUE
= λ13λ34sj(y1PSA

)

Indirect(4)sj→y4WUE
= λ23λ34sj(y2RB

)

TotalSj→y4WUE
= Directsj→y4WUE

+ Indirect(1)sj→y4WUE
+ Indirect(2)sj→y4WUE

+ Indirect(3)sj→y4WUE
+ Indirect(4)sj→y4WUE

= sj(y4WUE
) + λ14sj(y1PSA

) + λ34sj(y3WU
) + λ13λ34sj(y1PSA

) + λ23λ34sj(y2RB
)

The indirect and direct SNP effects across all possible paths with the total effect for WU286
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and WUE are compared in Supplementary Figures 1 and 2. The results showed a positive287

agreement for PSA→WU and direct effect with total effect on WU, whereas the RB→WU288

showed less association with total effect (Supplementary Figure 1). A positive association289

between direct and indirect effects was also observed for WU. When the paths to WUE290

were mediated by WU, all transmitted indirect effects have negative associations with to-291

tal SNP effects (Supplementary Figure 2). PSA→WU→WUE showed a greater association292

with total SNP effects than that of RB→WU→WUE and WU→WUE. The strongest pos-293

itive association with total effect was observed for PSA→WUE. The positive association294

between total effects with direct effect, and direct with indirect, were also relatively high.295

Supplementary Figure 3 shows that the agreement between the total SNP signals derived296

from MTM-GWAS and SEM-GWAS. We found that PSA and RB presented a stronger297

agreement between MTM-GWAS and SEM-GWAS, probably because the direct effect is298

equivalent to the total effect for these phenotypes, and does not require the estimation of299

additional parameters. The only discrepancy that may arise is that there might be some300

differences in the inferred effects, due to the methods used for inference. In contrast, the301

association between MTM-GWAS and SEM-GWAS was slightly weaker for WU and WUE,302

due to uncertainty regarding the additional estimated structural coefficients associated with303

the indirect effects included in the computation of total effects, especially given that our304

model is not fully recursive.305

Trade offs between MTM- and SEM-GWAS models suggest enrich-306

ment of candidate genes for the traits307

Nineteen of the top 20 SNPs showed a direct effect on WU (Pdirect < 0.01), while for WUE308

all SNPs showed an indirect effect (Pindirect ≥ 0.01). Interestingly, for both traits, all indirect309

effects at these loci could be attributed to PSA, indicating that alleles that influence shoot310

biomass may have an effect on WU and WUE. The positive relationship between dry matter311

production and WU is widely documented across multiple crops, and is simply because larger312
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plants have a greater water demand than small plants (Ehdaie, 1995; Hubick et al., 1986;313

Ismail and Hall, 1992). Moreover, in this study the plants were grown under simulated314

paddy conditions (i.e., with water-saturated soil); thus; there was sufficient water to meet315

these demands and sustain shoot growth in larger plants. In conditions where water is limited316

such relationships may not hold true.317

Several candidate genes associated with plant growth were identified in close proximity318

to SNPs with indirect effects. For instance, two genes with known roles in the regulation319

of organ size and plant growth, SMOS1 and OVP1, were identified for WU and WUE,320

respectively. OVP1 was located near the most significant SNP identified for WUE, and321

SEM-GWAS showed that this SNP influences WUE indirectly through PSA. OVP1 is known322

to influence abiotic stress responses in rice, as well as growth and development in Arabidopsis323

(Zhang et al., 2011; Khadilkar et al., 2015; Schilling et al., 2014). In rice, ectopic expression324

of OVP1 led to increased cell membrane integrity and accumulation of proline during cold325

stress (Zhang et al., 2011). The production of proline is important for the maintenance of cell326

water relations during water deficits. High proline levels are often observed during osmotic327

stresses, and effectively reduce the osmotic potential of the cell, which restores turgor pressure328

and facilitates cell growth. While Zhang et al. (2011) demonstrated a role for OVP1 in cold329

tolerance, the mechanisms that lead to the observed improvement in cold tolerance remain330

to be elucidated. However, the Arabidopsis ortholog of OVP1, AVP1, has been widely331

characterized and has been shown to be involved with the partitioning of photosynthates332

into the phloem and transport to the roots (Khadilkar et al., 2015). Khadilkar et al. (2015)333

showed that higher expression of AVP1 led to increased phloem loading of photosynthates,334

and resulted in a larger overall shoot and root biomass. Moreover, Schilling et al. (2014)335

showed similar effects in barley plants, which over expressed AVP1, further indicating that336

this gene may influence plant growth (Schilling et al., 2014).337

SMOS1 is located at ∼ 18.81 Mb on chromosome 5, and encodes an AP2 transcription338

factor. Initially identified through a mutant screen, SMOS1 knockout plants exhibit nearly339
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normal vegetative and reproductive development; however the leaf blade, leaf sheath, roots,340

flowers, and seeds are significantly reduced in the mutant lines (Aya et al., 2014). The shorter341

length of these organs was attributed to a reduction in cell size, indicating that this gene342

is involved in the regulation of cell growth. These observations were further supported by343

Aya et al. (2014) and Hirano et al. (2017), who showed that SMOS1 binds to the promoter344

of the cell expansion gene, phosphate-induced protein 1 ( PHI1 ). While the effect of OVP1345

and SMOS1 on shoot growth and water use efficiency remain to be elucidated in rice, the346

known functions of these genes, as well as their presence in close proximity to SNPs with347

indirect effects on WUE through PSA, are encouraging and warrant further investigation.348

Two notable genes were identified in close proximity to SNPs with direct effects on349

WU that have been shown to participate in ABA-induced stomatal closure. The stomatal350

aperture is controlled by a cascade of events that involve ABA as an upstream signal and351

reactive oxygen species (ROS) as an intermediate signal. The first gene, PYL11, encodes an352

ABA receptor. Kim et al. (2011) determined that PYL11 plays a role in seed germination353

and early growth, and showed that over-expression of PYL11 led to hypersensitivity to ABA.354

However, in a recent study, Miao et al. (2018) generated multiple high-order PYL knockout355

mutants in rice, and characterized several traits in field conditions (Miao et al., 2018). After356

ABA treatment, a greater proportion of stomates remained open in pyl11 compared to WT,357

indicating that stomatal closure is impaired in the pyl11 mutants. However, it was also358

shown that the total stomatal aperture of pyl11 was still greater than other pyl mutants,359

suggesting that other genes may have a stronger effect on stomatal responses to ABA.360

The second gene,RADICAL-INDUCED CELL DEATH1 (RCD1), is located at ∼ 35.87361

Mb on chromosome 3, and encodes a WWE-domain containing protein. RCD1 has been well362

characterized in Arabidopsis for hormonal responses and ROS homeostasis (Ahlfors et al.,363

2004). Interestingly, RCD1 and other members of the Similar to RCD One (SRO) family364

have been shown to be involved with the regulation of the stomatal aperture and water365

loss. For example, Ahlfors et al. (2004) showed that rcd1 mutants exhibit greater stomatal366
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conductance and greater water loss than the WT (Ahlfors et al., 2004). The over-expression367

of a RCD1 ortholog in rice, OsSRO1c, resulted in the opposite phenotype being observed,368

with a decreased stomatal aperture and reduced water loss compared with the WT (You369

et al., 2012). The ROS H2O2 has been shown to act downstream of ABA and to result370

in stomatal closure. Members of the SRO family are involved in the regulation of ROS371

homeostasis; thus, the stomata and water loss phenotypes exhibited by mis-regulation of372

SRO or RCD1 may be due to the inability to properly regulate H2O2 levels (You et al.,373

2012).374
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Discussion375

The relationship between biomass and WU in rice may involve complex network pathways376

with recursive effects. These network relationships cannot be modeled using a standard377

MTM-GWAS model. In this study, we incorporated the network structure between four378

phenotypes, PSA, RB, WU, and WUE, into a multivariate GWAS model using SEM. In379

GWAS, a distinction between undirected edges and directed edges is crucial, because often380

biologists and breeders are interested in studying and improving a suite of traits rather than381

a single trait in isolation. Moreover, intervention on one trait often influences the expression382

of another (Shipley, 2016). As highlighted in Alwin and Hauser (1975), one of the advantages383

of SEM is that it is capable of splitting the total effects into direct and indirect effects. In384

regards to genetic studies, SEM enables the researcher to elucidate the underlying mechanism385

by which an intervention trait may influence phenotypes using a network relationship (Wu386

et al., 2010; Onogi et al., 2016).387

Detecting putative causal genes is of considerable interest for determining which traits will388

be affected by specific loci from a biological perspective, and consequently partitioning the389

genetic signals according to the paths determined. Although the parameter interpretations390

of SEM as applied to QTL mapping (Li et al., 2006; Mi et al., 2010), expression QTL (Liu391

et al., 2008), or genetic selection (Valente et al., 2013) have been actively pursued, the work392

of Momen et al. (2018) marks one of the first studies to pay particular attention at the level of393

individual SNP effect in genome-wide SEM analyses. The SEM embeds a flexible framework394

for performing such network analysis in a GWAS context, and the current study demonstrates395

its the first application in crops. We assumed that modeling a system of four traits in rice396

simultaneously may help us to examine the sources of SNP effects in GWAS in greater depth.397

Therefore, we compared two GWAS methodologies that have the ability to embed multiple398

traits jointly, so that the estimated SNP effects from both models have different meanings.399

The main significance of SEM-GWAS, relative to MTM-GWAS, is to include the relationship400

between SNPs and measured phenotypes, coupled with relationships that are potentially401
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meditated by other phenotypes (mediator traits). This advances GWAS, and consequently402

the information obtained from phenotypic networks describing such interrelationships can be403

used to predict the behavior of complex systems (Momen et al., 2018). Although we analyzed404

the observed phenotypes in the current study, the factor analysis component of SEM can405

be added to SEM-GWAS by deriving latent factors from multiple phenotypes (e.g., Verhulst406

et al., 2017; Leal-Gutiérrez et al., 2018). The inference of a phenotypic network structure407

was carried out using a Bayesian network, which has applications in genetics ranging from408

modeling linkage disequilibrium (Morota et al., 2012) to epistasis (Han et al., 2012).409

Effective water use and water capture are essential for the growth of plants in arid410

environments, where water is a limiting factor. These processes are tightly intertwined, and411

therefore must be studied in a holistic manner. In the current study, we sought to understand412

the genetic basis of water use, water capture, and growth by examining PSA, RB, WU, and413

WUE in a diverse panel of rice accessions. The identification of several genes that have414

been reported to regulate one or more of these processes highlights the interconnectedness415

of PSA, RB, WU, and WUE (Ho et al., 2005; Zhang et al., 2011; Schilling et al., 2014). We416

used SEM analysis to observe significant interactions between intermediate variables and417

independent variables in each of the four phenotypes studied. The two most significant QTL418

identified harbored two genes that are known to regulate OVP1 (which is located near the419

most significant SNP identified for WUE) and SMOS1, for WUE and WU, respectively. As420

discussed above, the effect of OVP1 and SMOS1 on shoot growth and water use efficiency421

remain to be elucidated in rice; their known functions, as well as their presence in close422

proximity to SNPs with indirect effects on WUE through PSA, are encouraging and warrant423

further investigation. We also found two important genes in close proximity to SNPs that424

have direct effects on WU, and have been shown to participate in ABA-induced stomatal425

closure. The first gene, PYL11, encodes an ABA receptor and the second gene, RCD1, is426

located at 35.87 Mb on chromosome 3 and encodes a WWE-domain containing protein. The427

identification of these genes within this QTL interval suggests that these genes may have an428
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impact on RB and WU. These findings highlight the significant potential and importance429

of mediator relationship inclusion in the association between other variables in the inferred430

graph.431

A deep understanding of the complex relationship between effective water use and water432

capture, and its impact on plant growth in arid environments, is critical as we continue to433

develop germplasm that is resilient to challenging future climates. As with the significant434

recent advances in phenotyping and remote sensing technologies, tomorrow’s plant breeders435

will have a new suite of tools to quantify morphological, physiological, and environmental436

variables at high resolutions. To fully harness these emerging technologies and leverage437

these multi-dimensional datasets for crop improvement, new analytical approaches must be438

developed that integrate genomic and phenomic data in a biologically meaningful framework.439

This study examined multiple phenotypes determined using a Bayesian network that may440

serve as potential factors to allow intervention in complex trait GWAS. The SEM-GWAS441

seems to provide enhanced statistical analysis of MTM-GWAS by accounting for phenotypic442

network structures.443
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Tables452

Table 1: Genomic (upper triangular), residual (lower triangular) correlations and genomic
heritablities (diagonals) of four traits in the rice with posterior standard deviations in paren-
theses. Projected shoot area (PSA), root biomass (RB), water use (WU), and water use
efficiency (WUE).

PSA WU WUE RB
PSA 0.677 (0.092) 0.846 (0.043) 0.920 (0.018) 0.515 (0.102)
WU 0.443 (0.152) 0.643 (0.097) 0.744 (0.076) 0.479 (0.114)

WUE 0.829 (0.052) 0.106 (0.182) 0.576 (0.092) 0.517 (0.107)
RB 0.030 (0.218) -0.134 (0.216) 0.111 (0.195) 0.733 (0.083)
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Table 2: Bayesian information criterion (BIC) for the network learned using the Max-Min
Parents and Children (MMPC) algorithm. BIC denote BIC scores for pairs of nodes and
reports the change in the score caused by an arc removal relative to the entire network score.
Projected shoot area (PSA), root biomass (RB), water use (WU), and water use efficiency
(WUE).

Algorithm from to BIC

MMPC

PSA WUE -311.039
PSA WU -2.680
WU WUE -108.154
RB WU -24.284
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Table 3: Structural coefficients (λ) estimates derived from the structural equation models.
Projected shoot area (PSA), root biomass (RB), water use (WU), and water use efficiency
(WUE).

Path λ Structural coefficient
PSA → WU λ13 0.767
RB → WU λ23 0.005

PSA → WUE λ14 1.339
WU → WUE λ34 -0.455
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Figures453

Figure 1: Scheme of inferred network structure using the Max-Min Parents and Children
(MMPC) algorithm. Structure learning test was performed with 2,500 bootstrap samples
with mutual information as the test statistic with a significance level at α = 0.01. Labels
of the edges refer to the strength and direction (parenthesis) which measure the confidence
of the directed edge. The strength indicates the frequency of the edge is present and the
direction measures the frequency of the direction conditioned on the presence of edge. PSA:
projected shoot area; RB: root biomass; WU: water use; WUE: water use efficiency.
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Figures454

Figure 2: Pictorial representation of phenotypic network and SNP effects (ŝ) using the
structural equation model for four traits. Unidirectional arrows indicate the direction of
effects and bidirectional arrows represent genetic correlations (g) among phenotypes. PSA:
projected shoot area; RB: root biomass; WU: water use; WUE: water use efficiency; ε:
residual.
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Figure 3: Manhattan plots of direct (affecting each trait without any mediation) and total
(sum of all direct and indirect) SNP effects on projected shoot area (PSA) using SEM-GWAS
based on the network learned by the MMPC algorithm. Each point represents a SNP and
the height of the SNP represents the extent of its association with PSA.
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Figure 4: Manhattan plots of direct (affecting each trait without any mediation) and total
(sum of all direct and indirect) SNP effects on root biomass (RB) using SEM-GWAS based
on the network learned by the MMPC algorithm. Each point represents a SNP and the
height of the SNP represents the extent of its association with RB.
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Figure 5: Manhattan plot of direct (affecting each trait without any mediation), indirect
(mediated by other phenotypes), and total (sum of all direct and indirect) SNP effects on
water use (WU) using SEM-GWAS based on the network learned by the MMPC algorithm.
Each point represents a SNP and the height of the SNP represents the extent of its association
with WU.
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Figure 6: Manhattan plot of direct (affecting each trait without any mediation), indirect
(mediated by other phenotypes), and total (sum of all direct and indirect) SNP effects on
water use efficienty (WUE)using SEM-GWAS based on the network learned by the MMPC
algorithm. Each point represents a SNP and the height of the SNP represents the extent of
its association with WUE.
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