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Abstract 

Background: Genomic selection has been successfully implemented in plant and animal breeding programs to 
shorten generation intervals and accelerate genetic progress per unit of time. In practice, genomic selection can 
be used to improve several correlated traits simultaneously via multiple-trait prediction, which exploits correlations 
between traits. However, few studies have explored multiple-trait genomic selection. Our aim was to infer genetic 
correlations between three traits measured in broiler chickens by exploring kinship matrices based on a linear com-
bination of measures of pedigree and marker-based relatedness. A predictive assessment was used to gauge genetic 
correlations.

Methods: A multivariate genomic best linear unbiased prediction model was designed to combine information from 
pedigree and genome-wide markers in order to assess genetic correlations between three complex traits in chickens, 
i.e. body weight at 35 days of age (BW), ultrasound area of breast meat (BM) and hen-house egg production (HHP). A 
dataset with 1351 birds that were genotyped with the 600 K Affymetrix platform was used. A kinship kernel (K) was 
constructed as K = λG + (1 − λ)A, where A is the numerator relationship matrix, measuring pedigree-based related-
ness, and G is a genomic relationship matrix. The weight (λ) assigned to each source of information varied over the 
grid λ = (0, 0.2, 0.4, 0.6, 0.8, 1). Maximum likelihood estimates of heritability and genetic correlations were obtained at 
each λ, and the “optimum” λ was determined using cross-validation.

Results: Estimates of genetic correlations were affected by the weight placed on the source of information used to 
build K. For example, the genetic correlation between BW–HHP and BM–HHP changed markedly when λ varied from 
0 (only A used for measuring relatedness) to 1 (only genomic information used). As λ increased, predictive correlations 
(correlation between observed phenotypes and predicted breeding values) increased and mean-squared predictive 
error decreased. However, the improvement in predictive ability was not monotonic, with an optimum found at some 
0 < λ < 1, i.e., when both sources of information were used together.

Conclusions: Our findings indicate that multiple-trait prediction may benefit from combining pedigree and marker 
information. Also, it appeared that expected correlated responses to selection computed from standard theory may 
differ from realized responses. The predictive assessment provided a metric for performance evaluation as well as a 
means for expressing uncertainty of outcomes of multiple-trait selection.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

Ge n e t i c s
Se lec t ion
Evolut ion

*Correspondence:  mehrgardi@uk.ac.ir 
1 Department of Animal Science, Faculty of Agriculture, Shahid Bahonar 
University of Kerman (SBUK), Kerman, Iran
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12711-017-0290-9&domain=pdf


Page 2 of 14Momen et al. Genet Sel Evol  (2017) 49:16 

Background
The increasing availability of genome-wide dense molec-
ular markers [e.g., single nucleotide polymorphisms 
(SNPs)] has opened new avenues for obtaining additional 
genetic gain in breeding of elite animals and plants by 
exploiting “genomic selection” methods. These tech-
niques have become important tools in modern breeding 
programs [1, 2]. Many statistical methods with paramet-
ric or non-parametric formulations have been proposed 
to predict either genomic estimated breeding values 
(GEBV) of animals or yet-to-be observed phenotypes [1, 
3–6].

Most prediction studies have been based on single-
trait (uni-variate) statistical models. However, in practice, 
animals and plants often must be evaluated for several 
economically important traits. Multiple-trait model 
predictions have been typically regarded as better than 
uni-variate predictions [7]. For example, milk yield and 
composition in dairy cattle or grain yield and resistance 
to disease in plants are often analyzed with multiple-trait 
methods [8, 9]. Multi-trait models based on pedigree 
information represent the typical modeling strategy used 
to capitalize on genetic evaluation of several correlated 
traits before genomic selection methods became popu-
lar [10]. A multiple-trait analysis requires knowledge of 
phenotypic and genetic correlations among characters 
[7]. These correlations indicate the extent to which meas-
urements on one trait inform about other traits [11], and 
predictions based on single-trait models do not exploit 
the extra information provided by other traits.

Multiple-trait genomic selection models (MT-GS) have 
been explored and tested in research only to a limited 
extent [12]. A genome-based multiple-trait analysis may 
also offer insight into mechanisms that create trait associa-
tions, such as pleiotropy and linkage disequilibrium (LD) 
between quantitative trait loci (QTL) and markers [13]. 
One hypothesis is that correlation parameters that are 
inferred using whole-genome dense molecular markers 
may give a novel picture of the genetic correlation between 
traits [14, 15]. However, the sources of genetic and 
genomic correlations may be distinct [13, 16]. Genomic 
correlations depend in part on linkage disequilibrium 
(LD) relationships between markers and QTL, which are 
unknown, while genetic correlations are in part a function 
of LD between QTL. Multivariate genome-based mod-
els may produce “missing”: situation in which the genetic 
correlation is undetected by the markers, “excessive”: LD 
between markers increase the magnitude of the pleiotropy 
effects of the QTL, or even “spurious”: there is no pleiot-
ropy but LD between markers and/or pairs of QTL may 
produce pseudo pleiotropy (abbreviated as MES) genetic 
correlations and, as a consequence, distort expectations 
about outcomes of multiple-trait selection.

The objective of this study was to infer genetic and 
genomic correlations between three traits measured in 
broilers by exploring linear combinations of pedigree-
based (genealogical) and marker-based relationship 
matrices. As advocated by [17], a predictive approach 
was used to gauge parameter estimates and to provide 
an empirical test of the extent of genetic association 
between traits.

Methods
Data
The data consisted of records on 1351 birds from a com-
mercial broiler chicken line that had undergone several 
generations of selection using the traditional multiple-
trait genetic evaluations at the Aviagen Ltd Company 
(Aviagen Ltd, Newbridge, UK). The traits considered 
were body weight at 35  days of age (BW), ultrasound 
area of breast meat (BM), and hen-house production 
(HHP, total number of eggs laid between weeks 28 and 
54). Some features of the dataset and pedigree infor-
mation are in Table 1. All birds had phenotype records 
and a known sire and dam, and there were 326 and 
274 paternal half-sib and full-sib groups in the sample, 
respectively. This dataset has also been used in other 
studies by Abdollahi-Arpanahi et  al. [18] and Morota 
et al. [19].

Phenotype correction
Prior to implementing the genome-enabled trivariate 
prediction model, we pre-corrected phenotypes to elimi-
nate all known nuisance non-genetic sources of variation. 
This correction was based on uni-variate mixed effects 
models; BW and BM were corrected for a combined 
effect of sex, hatch week, contemporary group of parents, 
and pen in the growing farm. HHP was corrected for ran-
dom hatch effects, with a general mean as the sole fixed 
effect. Figure 1 shows a scatter plot of pre-corrected phe-
notypes for these traits. A positive association between 
BW and BM is suggested, whereas the scatter plots for 
the pairs BM-HHP and BW-HHP do not indicate con-
comitant variation.

Table 1 Pedigree information and  features of  the chicken 
data used

Total birds in the pedigree 1675

Number of sires 326

Number of dams 592

Number of full-sib groups 274

Number of progeny with records and known sire and dam 1351

Number of inbreds (pedigree-based inbreeding >0) 159

Inbreeding coefficient range all birds in the pedigree (%) 0.4 to 10.9
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Genotyping
The 1351 birds were genotyped using an 600  K Affym-
etrix SNP chip. SNPs with a minor allelic frequency 
(MAF) lower than 1% and a call frequency lower than 
0.95 were filtered out. Missing genotypes were imputed 
locus by locus using the Beagle software version 3.3.2 
[20]. After quality control, 354,364 SNPs remained for 
statistical analyses.

Whole‑genome prediction models
Tri-variate linear models were used for estimating (co)
variance components and for predicting genomic breed-
ing values. Such models were an extension of a typical 
single-trait model with random pedigree or genome-
based effects, which can be represented as:

where, yt is a vector of m × 1 pre-corrected phenotypes 
for trait t (m =  1351); μt is a general constant and 1 is 
a vector of ones; Z is an incidence matrix (an identity 
matrix in all cases) that allocates records to breeding val-
ues; gt is a vector of additive genetic effects or of direct 
genomic breeding values, and ǫt is a vector of residuals 

for trait t. It was assumed that gt ∼
(

0,Kσ 2
gt

)

 where σ 2
gt

 is 

the additive genetic or genomic variance of trait t, and K 
(m × m) reflects a covariance structure that results from 
the combined use of pedigree and marker information, as 
described later. Random residuals were assumed to fol-
low a normal distribution ǫt ∼ N

(

0, Itσ
2
ǫt

)

, where It is 
an m × m identity matrix and σ 2

ǫt
 is the residual variance 

for trait t; this term represents variation of pre-corrected 
phenotypes that is not explained by additive genomic 
effects. The vectors gt and ǫt were assumed to be inde-
pendent. The multi-variate model was:

(1)yt = 1µt + Zgt + ǫt; t = 1, 2, 3,

where, yt, μt, Zt, gt and ǫt are as before. The vector of 
multi-trait additive genetic or genomic breeding val-

ues was distributed as 





g1
g2
g3



 ∼ N (0,K ⊗Q), where K 

is a kinship or kernel matrix (described later) and Q is 
the (3 × 3) matrix of pedigree- or marker-based covari-
ances among traits. The multivariate residual distribu-

tion was assumed to be 





ǫ1

ǫ2

ǫ3



 ∼ N (0, I⊗ R), where R is 

the (3 × 3) residual covariance matrix among traits. The 
Kronecker product (⊗) notation applies to the residual 
covariance since all traits were measured on all birds.

Pedigree‑based and whole‑genome relationship matrices
In a genomic best linear unbiased prediction model 
(GBLUP), a genomic relationship matrix (G) computed 
from marker data replaces the pedigree-based matrix (A) 
of standard BLUP applications. The genomic relation-
ship matrix intends to measure the realized fraction of 
alleles shared, rather than the expected fraction, as is the 
case for A [21, 22]. Genomic relationship matrices can be 
calculated in different ways (e.g., [23]) but here we used 
two known alternatives, as described next. First, Van-
Raden [22] proposed the m  ×  m matrix GV = WW′

2
∑

piqi
 , 

which renders G analogous to the numerator relationship 
matrix A due to the denominator, 2Σpiqi. Here, W is a 
m × p centered matrix of SNP genotype codes 0, 1 and 2 
(p = 354,364) and pi is the MAF at locus i. Second, Forni 
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Fig. 1 Scatter plots of phenotypes pre-corrected for non-genetic sources of variation for body weight (BW), breast muscle area (BM) and hen-house 
production (HHP)
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et  al. [21] suggested a modification of the denominator, 
GF = WW′

{trace[WW′]}/m
, which attempts to attain compat-

ibility of the genomic relationship matrix with A when 
either the average level inbreeding is low or when the num-
ber of generations back to the base population is small.

An alternative to using any given G is to combine 
genomic and pedigree information into a single kinship 
“kernel” matrix (in the sense of [24]). A “kernel” matrix 
that exploits genealogy information together with marker-
based information could potentially capture parts of the 
genetic covariance among traits that is not accounted 
for by either A or G alone. We followed multiple-kernel 
ideas [25] and used the kernel K = λG + (1 − λ)A, where 
λ is a parameter (weight) bounded between 0 and 1, and 
G = GV or GF. For example, if λ = 0, pedigree informa-
tion “dominates” in the model, which retrieves a tradi-
tional pedigree-based BLUP. Our expectation was that a 
specific combination of A and G matrices would provide 
the “best” estimates of parameters, as gauged by predic-
tion of outcomes, as opposed to using either A or G alone 
or both, with (co)variance components estimated in train-
ing samples. To assess the best value of λ, we applied the 
grid λ = (0, 0.2, 0.4, 0.6, 0.8, 1) and evaluated the ensuing 
predictive abilities over such a grid.

When using marker- and pedigree-based relationship 
matrices together, scaling of genomic relationship matri-
ces is needed for interpretation of parameters in the con-
text of theory, e.g., in relation to a base population [26]. 
Estimates of parameters may be distorted if a genomic 
relationship matrix is not on the same scale as the ped-
igree-based relationship matrix. A reasonable rescaling 
may be achieved by using genomic relationship matrices 
with elements that range between 0 and 2, which are the 
minimum and maximum values of A, respectively. To 
render G on the same scale as A, we used the map min-
max-function that is widely used in machine learning, 
e.g. [27], as follows:

Here, Gsij is a scaled element of the GV or GF matrix 
and Gij is typical element of GV or GF; Gsmax =  2 and 
Gsmin =  0 are the minimum and maximum values ele-
ments that the scaled matrix is allowed to take, respec-
tively, and Gmin and Gmax are the maximum and 
minimum entries of the GV or GF matrix, respectively. 
While GV and GF may contain negative off-diagonals, this 
is not the case for the scaled matrices used here.

Model fitting and validation
Variance and covariance components were estimated 
with multiple-trait restricted maximum likelihood 

(3)Gsij =
(Gsmax − Gsmin)×

(

Gij − Gmin

)

Gmax − Gmin
+ Gsmin.

(REML) via an average information algorithm (AI) 
implemented in the WOMBAT program [28]. The soft-
ware provides point estimates of (co)variance com-
ponents and their asymptotic standard errors. Matrix 
K = λG + (1 − λ)A was used as kinship matrix, where G 
was either the unscaled or scaled versions GV or GF.

We used a cross-validation scheme with 20 randomly 
constructed training and testing sets to assess predictive 
ability over the grid of λ values. We randomly partitioned 
the whole data into training (60%) and testing (40%) sets 
in each of the 20 repetitions. After a model was fitted to 
the training set data, we compared its predictions against 
realized values in the test set. Predictive ability was meas-
ured by mean squared error (MSE) and by the correlation 
between predicted and observed phenotypes in the test-
ing set.

Realized versus expected genetic regressions 
between traits
We also evaluated predictive relationships between pairs 
of traits, i.e., BW-BM, BW-HHP and BM-HHP, accord-
ing to the cross-validation scheme described earlier. Over 
the predefined grid λ = (0, 0.2, 0.4, 0.6, 0.8, 1), we com-
puted least-squares estimates of the regression of the 
phenotype for trait x on DGV for trait y, and vice versa, 
for each pair of traits for each of the 20 validation sets. 
These realized regressions were compared to expected 
genetic regressions deduced from REML (co)variance 
component estimates as:

where, rG(x,y)(�) is the estimated genetic correlation 
between traits x and y, and σ 2

G(x)(�) and σ 2
G(y)

(�) are the 
genetic variances estimated by REML over the prede-
fined grid of λ.

Results
Heritability
Table 2 shows the heritability estimates obtained for each 
λ value, both for unscaled and scaled genomic relation-
ship matrices. A low to moderate heritability was found 
for BW, BM and HHP. When using pedigree-based infor-
mation only, heritability estimates (standard errors in 
parenthesis) were 0.187 (0.049), 0.244 (0.052) and 0.315 
(0.074), respectively (Table  2). These estimated herit-
abilities changed to 0.165 (0.039), 0.255 (0.042) and 0.196 
(0.052) with an unscaled GF, and to 0.156 (0.06), 0.243 
(0.04) and 0.174 (0.04) with an unscaled GV. Scaling the 
genomic relationship matrices increased heritability esti-
mates relative to those obtained from unscaled matrices. 
Estimated heritabilities in the present study were lower 
than in [29, 30] using the same population from which 

b(x,y)(�) = rG(x,y)(�)×
√

σ 2
G(x)(�)/

√

σ 2
G(y)

(�),
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our dataset was drawn but with a larger sample size from 
four generations of three commercial lines, at varying 
intensities of selection in the Aviagen UK breeding pro-
gram. For example, in [29, 30] estimates for BW ranged 
from 0.326 (0.011) to 0.399 (0.015), whereas in our study 
they ranged from 0.156 (0.06) to 0.187 (0.049). Our result 
is based on a small subset of birds taken from the overall 
population; therefore it is expected that estimated her-
itabilities h2 would differ from those obtained using all 
available data, which would account for past selection.

Here, we used scaled kinship matrices to obtain “genetic 
parameters” which do not necessarily correspond to only 
those from standard pedigree-based additive genetic 
relationships or realized genomic pairwise similari-
ties. Following VanRaden [22], if the expectation of G is 
A, then; E(K) = E(λG + (1 − λ)A) = A. However, if one 
uses a scaled GV, it follows from the scaling formula that 
E(Gsij) = 2E(Gij × Gmin/(Gmax − Gmin)). The latter expec-
tation cannot be written in a closed form, because this 
requires knowledge of the distributions of Gmin and Gmax.

Our multiple-trait GBLUP analysis indicated that the 
highest heritability estimates were not obtained at the 
extremes (0 or 1) of the λ grid. For example, the highest 
genomic heritability for BW was obtained at λ = 0.4(0.8), 
for unscaled (scaled) GF, and at λ = 0.4 for the two ver-
sions of GV. Scaling GF and GV always increased her-
itability estimates. For BM, higher heritabilities were 
obtained when scaling was applied. More specifically, the 
highest estimates were obtained at λ = 1 (GF) and λ = 0.6 
(GV). With unscaled matrices, the highest heritabilities 
were obtained at λ = 0.4 and λ = 0.2. For HHP, the high-
est heritabilities were found at the extreme values of λ: 
λ =  0 for unscaled GF and GV (scaled or unscaled) and 
λ = 1 for scaled GF. Adding genomic information had lit-
tle impact on heritability estimates of HHP, except with 
scaled GF.

Our findings illustrate a fairly obvious point made by 
Legarra et al. [26]: genomic heritability and its estimates 
are not invariant with respect to how G is constructed. 
Hence, inferences and comparisons between results from 
different studies must be done with care. In short, our 
results with a multiple-trait model indicated that a pedi-
gree-marker based kernel (K) had an impact on heritabil-
ity estimates and that scaling of the genomic relationship 
matrix led to higher “heritability” estimates, especially 
for GF.

Genetic correlations
Estimates of correlations are in Table  3 and Figs.  2 and 
3. Estimates of residual and phenotypic correlations were 
less sensitive to λ than genetic correlations, so our dis-
cussion concentrates on the latter. All parameters were 
estimated for each λ and for each of the two genomic 
relationship matrices. When using a pedigree-marker 
based kinship matrix (K), estimates of genetic cor-
relations for BW-HHP and BM-HHP changed gradu-
ally when λ increased from 0 to 1. Results are shown 
graphically in Figs.  2 and 3 for GF and GV, respectively. 
Changes were more pronounced for the genetic corre-
lation between BW and HHP, which decreased in abso-
lute value from −0.192 (λ = 0) to −0.02 (GF, unscaled), 
−0.019 (GF, scaled), and 0.033 (GV scaled or unscaled) 
with λ = 1. Estimates of the genetic correlation between 
BM and HHP were always negative and tended to 
decrease in absolute value as λ increased. They decreased 
from about −0.206 when only pedigree-based infor-
mation (λ = 0) was used to −0.154 when only genomic 
information (λ = 1) was used to construct K from scaled 
or unscaled versions of GF. BW and BM presented large 
positive genetic correlation estimates that ranged from 
0.484 with the pedigree-based model to 0.497 (0.525) 
when only GF (GV) was used. It was insensitive to scaling 

Table 2 Estimates of heritability for body weight (BW), ultrasound area of breast meat (BM) and hen-house egg produc-
tion (HHP) obtained by placing varying weights (λ) on the pedigree-based relationship matrix (A) and on Forni’s (GF) or 
VanRaden’s (GV) relationship matrix

The largest estimates are italics

Regularization parameter (λ) GF GV

Unscaled Scaled Unscaled Scaled

h
2
BW

h
2
BM

h
2
HHP

h
2
BW

h
2
BM

h
2
HHP

h
2
BW

h
2
BM

h
2
HHP

h
2
BW

h
2
BM

h
2
HHP

A (λ = 0) 0.187 0.244 0.315 0.187 0.244 0.315 0.187 0.244 0.315 0.187 0.244 0.315

λ = 0.20 0.226 0.291 0.309 0.234 0.297 0.340 0.223 0.291 0.299 0.230 0.295 0.311

λ = 0.40 0.232 0.303 0.285 0.278 0.348 0.360 0.227 0.299 0.270 0.247 0.318 0.295

λ = 0.60 0.219 0.297 0.258 0.315 0.395 0.374 0.213 0.290 0.239 0.245 0.323 0.272

λ = 0.80 0.197 0.281 0.230 0.335 0.431 0.377 0.189 0.272 0.209 0.227 0.316 0.245

G (λ = 1) 0.165 0.255 0.196 0.313 0.442 0.361 0.156 0.243 0.174 0.193 0.293 0.214
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of the G matrix. Standard errors of estimates for BM-BW 
(results not shown) tended to decrease when λ increased. 
There were no clear tendencies for the standard errors 
of estimates of the genetic correlation of BW with HHP 
and BM with HHP. In short, classical genetic correla-
tions (based on A) and genomic correlations (based on 
G) were distinct, depending on the pairs of traits con-
sidered. However, varying λ from 0 to 1 produced very 
minor changes in estimates of the genetic correlation 
between BM and HHP, but large changes in estimates of 
the genetic correlation between BW and HHP. Estimates 
of the genetic correlations between BW and BM were 
insensitive to λ.

The differences that were observed in estimates of 
genetic correlations depended on the type of informa-
tion used. From theory, standard pedigree-based linear 
models capture expected genetic covariation, whereas 
marker-based models capture genetic covariation that is 

marked by SNPs. Our results are important from the per-
spective of multiple-trait genomic analysis because they 
indicate that estimates of genetic correlations between 
some traits may depend on the type of information 
used. This was clearly the case for the genetic correlation 
between BW and HHP.

Multiple-trait pedigree or marker-based prediction 
was designed to exploit genetic correlations between tar-
get characters and indicator traits [16], especially when a 
lowly heritable target trait is genetically correlated with an 
indicator that has a higher heritability. Our results indi-
cate that estimates of genomic correlation between char-
acters may reaffirm or disagree with expectations that are 
developed from a pedigree-based analysis. For example, 
on the one hand, the genetic and genomic correlations 
between BW and BM were insensitive to λ values, i.e., 
estimates of the genomic correlation and of the genetic 
correlation derived from the infinitesimal model were the 

Table 3 Phenotypic (rp) and environmental (re) correlations between body weight (BW), ultrasound area of breast meat 
(BM) and  hen-house egg production (HHP) from  a tri-variate analysis with  varying weights (λ) on  the pedigree-based 
relationship matrix (A) and on Forni’s (GF) or VanRaden’s (GV) relationship matrix

A: numerator relationship matix, GF: Forni’s relationship matrix, GV: VanRaden’s relationship matrix

Regularization parameter (λ) re(BW ,BM) re(BW ,HHP) re(BM,HHP) rP(BW ,BM) rP(BW ,HHP) rP(BM,HHP)

GF

Unscaled

A (λ = 0) 0.480 (0.034) −0.026 (0.058) −0.010 (0.063) 0.480 (0.023) −0.066 (0.036) −0.065 (0.039)

λ = 0.20 0.481 (0.036) −0.023 (0.059) −0.003 (0.064) 0.479 (0.023) −0.067 (0.037) −0.065 (0.039)

λ = 0.40 0.482 (0.035) −0.034 (0.057) −0.011 (0.061) 0.479 (0.023) −0.065 (0.037) −0.063 (0.039)

λ = 0.60 0.482 (0.033) −0.047 (0.053) −0.020 (0.057) 0.479 (0.023) −0.062 (0.036) −0.061 (0.039)

λ = 0.80 0.481 (0.031) −0.058 (0.049) −0.028 (0.053) 0.479 (0.023) −0.059 (0.036) −0.059 (0.038)

G (λ = 1) 0.479 (0.029) −0.068 (0.045) −0.035 (0.049) 0.479 (0.023) −0.059 (0.036) −0.062 (0.038)

Scaled

λ = 0.20 0.484 (0.035) −0.022 (0.059) −0.006 (0.064) 0.479 (0.024) −0.074 (0.039) −0.073 (0.041)

λ = 0.40 0.484 (0.036) −0.024 (0.059) −0.006 (0.063) 0.478 (0.027) −0.079 (0.042) −0.080 (0.045)

λ = 0.60 0.485 (0.035) −0.034 (0.057) −0.012 (0.061) 0.477 (0.031) −0.080 (0.047) −0.084 (0.049)

λ = 0.80 0.484 (0.033) −0.050 (0.052) −0.062 (0.078) 0.477 (0.035) −0.072 (0.052) −0.084 (0.055)

G (λ = 1) 0.479 (0.029) −0.068 (0.045) −0.035 (0.049) 0.481 (0.038) −0.052 (0.056) −0.082 (0.059)

GV

Unscaled

λ = 0.20 0.480 (0.036) −0.033 (0.058) −0.004 (0.063) 0.480 (0.023) −0.066 (0.037) −0.066 (0.039)

λ = 0.40 0.480 (0.035) −0.046 (0.055) −0.011 (0.059) 0.480 (0.023) −0.064 (0.036) −0.064 (0.039)

λ = 0.60 0.479 (0.033) −0.060 (0.051) −0.018 (0.055) 0.480 (0.023) −0.061 (0.036) −0.063 (0.039)

λ = 0.80 0.476 (0.030) −0.070 (0.047) −0.024 (0.051) 0.481 (0.023) −0.059 (0.036) −0.062 (0.038)

G (λ = 1) 0.474 (0.028) −0.079 (0.044) −0.030 (0.047) 0.481 (0.023) −0.060 (0.036) −0.065 (0.038)

Scaled

λ = 0.20 0.484 (0.036) −0.030 (0.059) −0.006 (0.063) 0.479 (0.024) −0.070 (0.037) −0.071 (0.040)

λ = 0.40 0.483 (0.035) −0.043 (0.056) −0.010 (0.060) 0.479 (0.024) −0.069 (0.038) −0.072 (0.041)

λ = 0.60 0.482 (0.033) −0.057 (0.053) −0.018 (0.056) 0.479 (0.025) −0.066 (0.039) −0.072 (0.041)

λ = 0.80 0.478 (0.031) −0.070 (0.048) −0.025 (0.051) 0.481 (0.025) −0.061 (0.039) −0.072 (0.042)

G (λ = 1) 0.474 (0.028) −0.078 (0.044) −0.030 (0.047) 0.483 (0.025) −0.056 (0.039) −0.073 (0.042)



Page 7 of 14Momen et al. Genet Sel Evol  (2017) 49:16 

same. On the other hand, when considering BW and HHP, 
the estimate of the pedigree-based genetic correlation was 
equal to 0.2, whereas the estimate of the genomic correla-
tion was close to 0. This illustrates a situation where part 
of the covariance between a pair of traits was not detected 
by SNPs (“missing correlation”). Sources of genetic cor-
relation may be lost in a multiple-trait marker-based 
analysis. In the case of BM and HHP, the classical genetic 
correlation was estimated at −0.20 and the genomic 

correlation at −0.15. The pedigree-based analysis sug-
gested a stronger genetic correlation.

Care should be exercised when interpreting and using 
genetic parameters that are assessed via molecular mark-
ers, as predictions for complex traits based on pedi-
gree data may differ significantly from those based on 
SNP data. For this reason, we explored whether the two 
sources of information could be combined in some “opti-
mal” manner.
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Fig. 2 Average and standard errors estimates of genetic and genomic correlations across 20 replicates between body weight (BW), breast meat 
(BM) and hen-house production (HHP) as a function of the weight placed on Forni’s genomic relationship matrix GF (λ)
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Predictive ability
The question of how to arrive at a “best” estimate of a 
genetic correlation (i.e., for which the greatest advan-
tage of predicting ability is obtained) was examined 
and, to accomplish this objective, we used the predic-
tive approach advocated by Lo et al. [17]. Figure 4 shows 
boxplots with the distributions of predictive correla-
tions and mean squared errors for the cross-validation 
with 20 random repetitions. Some of the plots (e.g., BW) 
show a mild advantage of using a linear combination of 
G and A as kinship kernel. For BW, the largest corre-
lation and lowest MSE were obtained with unscaled GF 
and GV. In terms of the predictive correlation for BW, 
the largest values were obtained with scaled GV and 
unscaled GF, both at λ =  0.8. For BM, the largest pre-
dictive correlation was achieved with unscaled GV and 
scaled GF, at λ  =  0.4 and 0.8, respectively. For HHP, 
both scaled GV and GF resulted in better performance, 
and the largest predictive correlations were obtained at 
λ = 0.2.

The lowest MSE for BW was achieved for unscaled 
GF and scaled GV at λ = 0.6. For BM, the lowest MSE 
was obtained with λ close to 1 using scaled GV and GF. 
In addition, the scaled GV and GF produced the low-
est MSE for HHP, with a slight superiority for values 
of λ close to 1. In terms of MSE, except for BW with 
GF, scaling of genomic relationship matrices yielded 
better results. Our findings are in agreement with 
Rodríguez-Ramilo et  al. [31], who reported that when 
a larger weight was assigned to the numerator relation-
ship matrix (A), the predictive correlation was lower 
than when assigning more weight to the genomic rela-
tionship matrix (G); a similar behavior was found for 
MSE. Rodríguez-Ramilo et al. [31] estimated λ by using 
Bayesian methods and reported that the posterior 
mean of λ depended on training sample size and the 
trait.

Our results indicate that multiple-trait genome-ena-
bled predictions may be improved in some cases by com-
bining A and G to quantify kinship. This result may also 
hold when prediction involves multiple selection lines or 
crossbred animals. Combining kernels can be viewed as a 
form of model averaging [25], with markers and pedigree 
playing complementary roles in prediction, e.g., markers 
may exploit similarity in state and LD, with A informing 
about similarity by descent.

Our results using dense SNPs (600 K Affymetrix plat-
form) indicate that GBLUP with scaled or unscaled 
relationship matrices typically performed better than 
pedigree-based BLUP. However, in most cases, the largest 
correlation and lowest MSE were achieved using a linear 
combination of A and G.

Regression coefficients
Figures  5, 6 and 7 show scatter plots and average (red 
dotted line) genetic regression coefficients of the three 
traits on the estimated direct genomic values (DGV) of 
other traits calculated from REML estimates of (co)vari-
ance components. The realized regression coefficients 
were computed at each λ value for the 20 cross-validation 
random samples and their medians are depicted as dark 
blue dotted lines on each plot. The REML regressions 
express the expected change in genetic value of trait i if 
the direct genomic value for trait j changes by one unit.

For BW and BM (Fig.  5), the expected and realized 
regressions were larger than 0 for all values of λ. In gen-
eral, there was reasonable agreement between expected 
and realized regressions. However, for BW and HHP 
(Fig.  6), the expected genetic regressions were nega-
tive and moved toward 0 as λ increased, but the realized 
regressions (blue dotted lines) varied around 0 for all λ 
values. There was some apparent inconsistency between 
the expectations based on REML estimates and the 
cross-validation regression.

Figure  7 indicated a disagreement between expected 
genetic regressions and cross-validation regressions 
of BM on HHP when λ was close to 0. The expected 
regressions based on pedigree information were nega-
tive, while the cross-validation regressions were positive. 
The expected regressions of HHP phenotypes on DGV 
of BM and variances tended towards 0 as λ tended to 1, 
i.e., when more weight was placed on SNPs. The cross-
validation regressions were much more affected by the 
value of λ than the expected regressions based on REML 
estimates.

Discussion
In genome-enabled prediction, there are different ways of 
incorporating molecular marker information into para-
metric and non-parametric models [24, 32]. Research 
with simulated and real data has consistently shown 
that single-trait GBLUP displays slightly better predic-
tion accuracy when a trait is affected by a large number 
of QTL with small effects and as well as other genomic 
prediction methods for most traits [33, 34]. However, few 
studies on multiple-trait genomic prediction have been 
carried out with GBLUP, or have assessed estimates of 
genetic correlations when genomic or pedigree data were 
used. Similar to traditional pedigree-based genetic evalu-
ations, the use of multiple-trait GBLUP is expected to 
increase the accuracy of predictions via “borrowing” of 
information from genetically correlated traits [35].

In order to explore a multiple-trait GBLUP model that 
also makes use of pedigree information, we constructed 
a pedigree-marker based kinship matrix (K) as a linear 
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Fig. 4 Boxplot of predictive correlations across 20 replicates between phenotypes and predicted breeding values (upper two rows), and of mean 
squared errors (MSE) (bottom two rows) in testing sets. Red and light blue colors denote values for unscaled and scaled relationship matrices of Forni 
or VanRaden, respectively. Outliers are denoted as black dots, and the x-axis label denotes λ = 0, 0.2, 0.4, 0.6, 0.8, 1
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combination of pedigree and marker-based relationships 
between animals, defined as K = λG + (1 − λ)A. Predic-
tive ability of the model and parameter estimates were 
obtained over a grid of values of λ that varied between 0 
and 1, e.g., λ = 0 implied that all weight was assigned to 
pedigree, and none to SNPs.

One important factor to take into account when com-
bining marker- and pedigree-based relationship matrices 
is that such matrices are on the same scale. The elements 
of the additive relationship matrix are the numerators of 
Wright’s correlation coefficients that represent the rela-
tive genetic variances and covariances among individu-
als. Consequently, the diagonals of A can be as large as 2, 
and relationships between two individuals can be greater 
than 1.

Traditionally, to quantify coefficients of relationship 
with respect to a base (reference) population, as dis-
cussed in [36, 37], the probability that alleles are identical 
by descent (IBD) was derived from pedigree information 
and from a base population consisting of founders. How-
ever, for relationships estimated from genetic markers 

there is no obvious base population, and they estimate 
the proportion of the genome that is identical by state 
(IBS). In our data, genomic relationships measured by 
unscaled GV and GF can take negative values, whereas 
pedigree relationships are non-negative. In our data, no 
negative values were observed for full-sib genomic rela-
tionships but negative genomic additive relationships 
with small values near 0 were observed for unrelated 
individuals based on the pedigree (i.e., pedigree based 
relationship = 0). It remains to be seen whether genomic 
relationship measures can detect true ‘negative genomic 
correlations’ (if such correlations exist), which may be 
detectable using deep pedigree information and a defi-
nition of a base population. The genomic relationship 
matrices in our analyses were based on (IBS information 
and on frequencies of alleles to build the GRM.

Our results suggest that multiple-trait genetic predic-
tions depended on the weight assigned to genomic data. 
Better predictions were often obtained when pedigree 
and SNP information were used simultaneously. Ear-
lier studies using simulated or real data have explored 

Fig. 5 Scatter plots of the regression coefficient of observed phenotype for BW on DGV of BM; by(BW),DGV(BM) (first row), and the regression of 
observed phenotype for BM on DGV of BW; by(BM),DGV(BW) (second row) in the testing set for 20 cross-validated (CV) regression coefficients. The 
red dots are expected genetic regressions from REML analyses conducted at each λ. The x-axis label denotes λ = 0, 0.2, 0.4, 0.6, 0.8, 1. DGV: direct 
genomic values; GFU: unscaled Forni’s G; GFS: scaled Forni’s G; GVU: unscaled VanRaden’s G; GVS: scaled VanRaden’s G. Dark blue points show the 
median of regressions for 20 random samples



Page 11 of 14Momen et al. Genet Sel Evol  (2017) 49:16 

the potential superiority of multiple-trait over single-
trait genomic prediction with a focus on the relation-
ship between traits in terms of differences in heritability, 
genetic correlations and number of indicator traits (e.g., 
[35, 38, 39]). De Los Campos et  al. [40] indicated that 
potential problems may emerge when trying to infer 
genetic parameters using molecular markers that are 
imperfectly associated with genotypes at causal loci. Gia-
nola et  al. [13] showed that correlation parameters that 
are inferred from markers (i.e., genomic correlations) can 
give a distorted picture of the genetic correlation between 
traits. The sources of genetic correlation are pleiotropy 
(i.e., the same QTL affects more than one trait) and LD 
between QTL. When markers are used, marker-QTL LD 
and LD relationships among markers intervene in the 
genomic correlation.

Here, we examined the impact of combining A and G 
on estimates of the genomic correlation between three 
chicken traits and evaluated outcomes using a predictive 
framework. Some studies [12, 41] have shown superiority 
of multiple-trait prediction over single-trait prediction, 
and combining pedigree with marker information was 

found to be better than when using either A and G alone 
[32].

Our estimates of genetic correlations depended on the 
choice of λ. For example, on the one hand for BW and 
HHP, when using pedigree as the only measure of simi-
larity (λ =  0), the genetic correlation was −0.20, but it 
shifted to near 0 or was even positive (GV) when only 
marker information was used. On the other hand, the 
estimate of the genetic correlation between BW and 
BM was stable with respect to λ, while the estimate of 
the genetic correlation between BM and HHP was only 
slightly affected, i.e. changing from −0.21 to −0.15 for 
GF, and from −0.22 to −0.20 for GV for λ = 0 and λ = 1, 
respectively. Clearly, genomic data provide a distinct 
measure of similarity between individuals, and this trans-
lates into differential capturing of genetic signals. For 
instance, most off-diagonal entries of A were zero but all 
entries of G were non-null.

In order to increase the accuracy of predictions by 
using pedigree and genomic information jointly, Legarra 
et al. [42] proposed a single-step procedure that enhances 
relationship information for non-genotyped animals, 

Fig. 6 Scatter plot of the regression coefficient of observed phenotype for BW on DGV of HHP; by(BW),DGV(HHP) (first row) and the regression of 
observed phenotype for HHP on DGV of BW; by(HHP),DGV(BW) (second row) in testing set for 20 cross-validated (CV) regression coefficients. The red 
dots are expected genetic regressions from REML analyses conducted at each λ = (0, 0.2, 0.4, 0.6, 0.8, 1). The x-axis label denotes λ = 0, 0.2, 0.4, 0.6, 
0.8, 1. GFU: unscaled Forni’s G; GFS: scaled Forni’s G; GVU: unscaled VanRaden’s G; GVS: scaled VanRaden’s G. Dark blue points show the median of 
regression coefficients for 20 random samples
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without requiring major changes in the implementation 
of a standard BLUP model. In the study of Aguilar et al. 
[43], a three-fold increase in accuracy of GEBV was found 
for traits related to conception rate in Holstein dairy 
cows, with low heritability, when using a genomic-based 
relationship combined with a pedigree-based relation-
ship in a multiple trait model [43]. Using 18 quantitative 
traits in Holstein dairy cattle, Tsuruta et al. [44] reported 
that prediction accuracies increased when a multiple-
trait genomic prediction model was used compared to 
a single-trait model, but the increase depended on the 
trait being predicted. However, Bao et  al. [45] did not 
observe clear benefits when four traits were included in 
a multiple-trait genomic prediction model for soybeans 
compared to a single-trait model. However, these studies 
did not examine the impact of using combined genetic 
and genomic relationships. This shows that the effect of 
genetic correlations on multi-trait genomic prediction 
depends on the information type being used to construct 
K, with an impact on accuracy of prediction.

In our study, predictive ability was measured using 
the correlation between predicted genetic values and 
observed phenotypic values, and mean squared error 

of these predictions. As shown in Fig.  4, the optimum 
weight placed on genomic relationships was trait-
dependent. We took the view point that a “best” estimate 
of the genetic correlation would correspond to the linear 
combination of A and G (with a specific weight on each 
one) that delivered the best predictive ability, which was 
found by searching the weight (λ) placed on genomic 
versus pedigree relationships. This type of predictive 
approach has been advocated in the statistical literature 
[17, 46, 47].

In general, combinations of A and G kernels yielded 
better predictions than when only G was used. In a 
GBLUP model, the entries of G reflect the actual extent 
of IBS relationships between individuals, but without 
making a clear reference to a base population [48]. This 
implies that genomic (co)variance parameters do not 
necessarily have the same meaning as standard classi-
cal multiple-trait models genetic parameters, such as 
the infinitesimal genetic correlation. According to [49], 
pedigree information, co-segregation and population-
wide LD are three sources of genetic information that 
contribute to the predictive ability of genomic selection 
models. Co-segregation information can be captured by 

Fig. 7 Scatter plots of the regression of observed phenotype for BM on DGV of HHP; by(BM),DGV(HHP), (first row) and the regression of observed 
phenotype for HHP on DGV of BW by(HHP),DGV(BM), (second row) in testing set for 20 cross-validated (CV) regression coefficients. Red dots are expected 
genetic regressions from REML analyses conducted at each λ. The x-axis label denotes λ = 0, 0.2, 0.4, 0.6, 0.8, 1. GFU: unscaled Forni’s G; GFS: scaled 
Forni’s G; GVU: unscaled VanRaden’s G; GVS: scaled VanRaden’s G. Dark blue points show the median of regressions for 20 random samples
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IBD or IBS relationships and, when a pedigree is not deep 
enough, relatedness among individuals that is inferred 
from markers may improve prediction. However, how 
does one decide if an estimate of genetic correlation 
derived from genomic data is better than a pedigree-
based estimate?

In classical quantitative genetics, a genetic correlation 
between traits arises due to either genes that have an 
effect on both traits (pleiotropy), or due to LD between 
genes that affect different traits [50]. When investigating 
the basis of a genetic correlation, an important question 
is to determine the extent to which these two forces act 
on the genetic parameters [13, 51]. Multiple-trait QTL 
mapping methods may help distinguishing pleiotropy 
from linkage [52], but any such dissection in the absence 
of knowledge on QTL would be speculative.

Estimates of genetic correlations obtained from pedi-
gree or from markers may differ either due to chance 
or other reasons, such as extent of LD between mark-
ers and the unknown QTL. One possible way of testing 
if such differences are systematic, is to examine pairs 
of estimates of pedigree- and marker-based correla-
tions in re-samples from the dataset and constructing 
a paired comparison, by using either a parametric or a 
non-parametric approach. For example, the estimates of 
correlations could be z-transformed and a paired t test 
conducted.

In summary, combining pedigree- and marker-based 
information had an impact on predictive performance of 
multiple-trait models. Discerning the optimum weight 
placed on genomic and genealogical information is an 
important issue, and a grid-search scheme was used for 
that purpose. We found that estimates of genetic correla-
tion obtained with A and G matrices were different, but 
depended on the trait. This indicates that multiple-trait 
marker-based prediction may be enhanced by the combined 
use of genealogy and marker information in the models.

Conclusions
To our knowledge, this is the first study with animal 
breeding data that explores how the weight placed on 
pedigree and marker information affects multiple-trait 
predictions. We designed a tri-variate genomic predic-
tion model that exploited pedigree and marker infor-
mation simultaneously. Use of a kinship matrix that is 
formed as a linear combination of pedigree- and marker-
based relationships may enhance genome-enabled pre-
diction, but the optimal weight placed on the two sources 
of information will differ between traits. Genetic corre-
lation estimates from pedigree-based models may differ 
from those obtained from marker-based models, at least 
in some cases. Cross-validation was useful for gauging 
the genetic correlation in multiple-trait models.

Authors’ contributions
MM carried out the study and wrote the first draft of the manuscript. DG and 
GJMR designed the experiment, supervised the study and critically contrib-
uted to the final version of manuscript. BDV and AAM participated in discus-
sion and reviewed the manuscript. AS, AE and MAF contributed materials and 
revised the manuscript. All authors read and approved the final manuscript.

Author details
1 Department of Animal Science, Faculty of Agriculture, Shahid Bahonar 
University of Kerman (SBUK), Kerman, Iran. 2 Department of Statistical, Faculty 
of Mathematic and Computer Science, Shahid Bahonar University of Kerman 
(SBUK), Kerman, Iran. 3 State Key Laboratory of Genetic Resources and Evolu-
tion, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming 
Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China. 
4 Roslin Institute, University of Edinburgh, Midlothian, UK. 5 Department 
of Animal Sciences, University of Wisconsin, Madison, WI, USA. 6 Department 
of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, 
USA. 7 Department of Dairy Science, University of Wisconsin, Madison, WI, USA. 

Acknowledgements
The first author wishes to acknowledge Aviagen (Midlothian, United Kingdom) 
for providing the data, and the Ministry of Science, Research and Technology 
of Iran for financially supporting his visit to the University of Wisconsin-Mad-
ison. Work was partially supported by the Wisconsin Agriculture Experiment 
Station under hatch Grant 142-PRJ63CV to DG.

Competing interests
The authors declare that they have no competing interests.

Received: 16 July 2016   Accepted: 16 January 2017

References
 1. Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value 

using genome-wide dense marker maps. Genetics. 2001;157:1819–29.
 2. Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME. Invited review: 

genomic selection in dairy cattle: progress and challenges. J Dairy Sci. 
2009;92:433–43.

 3. de Los Campos G, Hickey JM, Pong-Wong R, Daetwyler HD, Calus MP. 
Whole-genome regression and prediction methods applied to plant and 
animal breeding. Genetics. 2013;193:327–45.

 4. Gianola D, Fernando RL, Stella A. Genomic-assisted prediction of genetic 
value with semiparametric procedures. Genetics. 2006;173:1761–76.

 5. Habier D, Fernando RL, Dekkers JC. The impact of genetic relation-
ship information on genome-assisted breeding values. Genetics. 
2007;177:2389–97.

 6. González-Recio O, Rosa GJM, Gianola D. Machine learning methods and 
predictive ability metrics for genome-wide prediction of complex traits. 
Livest Sci. 2014;166:217–31.

 7. Henderson CR, Quaas RL. Multiple trait evaluation using relatives records. 
J Anim Sci. 1976;43:1188–97.

 8. Jannink JL, Lorenz AJ, Iwata H. Genomic selection in plant breeding: from 
theory to practice. Brief Funct Genomics. 2010;9:166–77.

 9. Kadarmideen HN. Genomics to systems biology in animal and veterinary 
sciences: progress, lessons and opportunities. Livest Sci. 2014;166:232–48.

 10. Gianola D, Rosa GJM. One hundred years of statistical developments in 
animal breeding. Annu Rev Anim Biosci. 2015;3:19–56.

 11. Thompson R, Meyer K. A review of theoretical aspects in the estimation of 
breeding values for multi-trait selection. Livest Prod Sci. 1986;15:299–313.

 12. Jia Y, Jannink JL. Multiple-trait genomic selection methods increase 
genetic value prediction accuracy. Genetics. 2012;192:1513–22.

 13. Gianola D, de los Campos G, Toro MA, Naya H, Schön CC, Sorensen D. Do 
molecular markers inform about pleiotropy? Genetics. 2015;201:23–9.

 14. Korte A, Vilhjálmsson BJ, Segura V, Platt A, Long Q, Nordborg M. A mixed-
model approach for genome-wide association studies of correlated traits 
in structured populations. Nat Genet. 2012;44:1066–71.

 15. Maier R, Moser G, Chen GB, Ripke S, Coryell W, Potash JB, et al. Joint 
analysis of psychiatric disorders increases accuracy of risk prediction for 



Page 14 of 14Momen et al. Genet Sel Evol  (2017) 49:16 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

schizophrenia, bipolar disorder, and major depressive disorder. Am J Hum 
Genet. 2015;96:283–94.

 16. Calus MP, Veerkamp RF. Accuracy of multi-trait genomic selection using 
different methods. Genet Sel Evol. 2011;43:26.

 17. Lo A, Chernoff H, Zheng T, Lo SH. Why significant variables aren’t auto-
matically good predictors. Proc Natl Acad Sci USA. 2015;112:13892–7.

 18. Abdollahi-Arpanahi R, Morota G, Valente BD, Kranis A, Rosa GJM, Gianola 
D. Differential contribution of genomic regions to marked genetic vari-
ation and prediction of quantitative traits in broiler chickens. Genet Sel 
Evol. 2016;48:10.

 19. Morota G, Abdollahi-Arpanahi R, Kranis A, Gianola D. Genome-enabled 
prediction of quantitative traits in chickens using genomic annotation. 
BMC Genomics. 2014;15:109.

 20. Browning SR, Browning BL. Rapid and accurate haplotype phasing and 
missing-data inference for whole-genome association studies by use of 
localized haplotype clustering. Am J Hum Genet. 2007;81:1084–97.

 21. Forni S, Aguilar I, Misztal I. Different genomic relationship matrices for 
single-step analysis using phenotypic, pedigree and genomic informa-
tion. Genet Sel Evol. 2011;43:1.

 22. VanRaden PM. Efficient methods to compute genomic predictions. J 
Dairy Sci. 2008;91:4414–23.

 23. Astle W, Balding DJ. Population structure and cryptic relatedness in 
genetic association studies. Stat Sci. 2009;24(4):451–71.

 24. Morota G, Gianola D. Kernel-based whole-genome prediction of complex 
traits: a review. Front Genet. 2014;5:363.

 25. De Los Campos G, Gianola D, Rosa GJM, Weigel KA, Crossa J. Semi-para-
metric genomic-enabled prediction of genetic values using reproducing 
kernel Hilbert spaces methods. Genet Res (Camb). 2010;92:295–308.

 26. Legarra A, Christensen OF, Vitezica ZG, Aguilar I, Misztal I. Ancestral 
relationships using metafounders: finite ancestral populations and across 
population relationships. Genetics. 2015;200:455–68.

 27. Gianola D, Okut H, Weigel KA, Rosa GJ. Predicting complex quantitative 
traits with Bayesian neural networks: a case study with Jersey cows and 
wheat. BMC Genet. 2011;12:87.

 28. Meyer K. WOMBAT: a tool for mixed model analyses in quantitative 
genetics by restricted maximum likelihood (REML). J Zhejiang Univ Sci B. 
2007;8:815–21.

 29. Kapell DN, Hill WG, Neeteson AM, McAdam J, Koerhuis AN, Avendaño S. 
Genetic parameters of foot-pad dermatitis and body weight in purebred 
broiler lines in 2 contrasting environments. Poult Sci. 2012;91:565–74.

 30. Kapell DN, Hill WG, Neeteson AM, McAdam J, Koerhuis AN, Avendaño S. 
Twenty-five years of selection for improved leg health in purebred broiler 
lines and underlying genetic parameters. Poult Sci. 2012;91:3032–43.

 31. Rodríguez-Ramilo ST, García-Cortés LA, González-Recio Ó. Combining 
genomic and genealogical information in a reproducing kernel Hilbert 
spaces regression model for genome-enabled predictions in dairy cattle. 
PLoS One. 2014;9:e93424.

 32. Crossa J, de Los Campos G, Pérez P, Gianola D, Burgueño J, Araus JL, et al. 
Prediction of genetic values of quantitative traits in plant breeding using 
pedigree and molecular markers. Genetics. 2010;186:713–24.

 33. Wientjes YC, Veerkamp RF, Calus MP. The effect of linkage disequilibrium 
and family relationships on the reliability of genomic prediction. Genet-
ics. 2013;193:621–31.

 34. Wimmer V, Lehermeier C, Albrecht T, Auinger HJ, Wang Y, Schön CC. 
Genome-wide prediction of traits with different genetic architecture 
through efficient variable selection. Genetics. 2013;195:573–87.

 35. Guo G, Zhao F, Wang Y, Zhang Y, Du L, Su G. Comparison of single-trait 
and multiple-trait genomic prediction models. BMC Genet. 2014;15:30.

 36. Powell JE, Visscher PM, Goddard ME. Reconciling the analysis of IBD and 
IBS in complex trait studies. Nat Rev Genet. 2010;11:800–5.

 37. Forneris NS, Steibel JP, Legarra A, Vitezica ZG, Bates RO, Ernst CW, et al. 
A comparison of methods to estimate genomic relationships using 
pedigree and markers in livestock populations. J Anim Breed Genet. 
2016;133:452–62.

 38. Hayashi T, Iwata H. A Bayesian method and its variational approximation 
for prediction of genomic breeding values in multiple traits. BMC Bioin-
formatics. 2013;14:34.

 39. Schulthess AW, Wang Y, Miedaner T, Wilde P, Reif JC, Zhao Y. Multiple-trait-
and selection indices-genomic predictions for grain yield and protein 
content in rye for feeding purposes. Theor Appl Genet. 2015;129:273–87.

 40. de Los Campos G, Sorensen D, Gianola D. Genomic heritability: what is it? 
PLoS Genet. 2015;11:e1005048.

 41. Clark SA, Hickey JM, Daetwyler HD, van der Werf JH. The importance of 
information on relatives for the prediction of genomic breeding values 
and the implications for the makeup of reference data sets in livestock 
breeding schemes. Genet Sel Evol. 2012;44:4.

 42. Legarra A, Aguilar I, Misztal I. A relationship matrix including full pedigree 
and genomic information. J Dairy Sci. 2009;92:4656–63.

 43. Aguilar I, Misztal I, Tsuruta S, Wiggans G, Lawlor T. Multiple trait genomic 
evaluation of conception rate in Holsteins. J Dairy Sci. 2011;94:2621–4.

 44. Tsuruta S, Misztal I, Aguilar I, Lawlor T. Multiple-trait genomic evaluation 
of linear type traits using genomic and phenotypic data in US Holsteins. J 
Dairy Sci. 2011;94:4198–204.

 45. Bao Y, Kurle JE, Anderson G, Young ND. Association mapping and 
genomic prediction for resistance to sudden death syndrome in early 
maturing soybean germplasm. Mol Breed. 2015;35:128.

 46. Shmueli G. To explain or to predict? Stat Sci. 2010;25(3):289–310.
 47. Geisser S. Predictive inference: an introduction. New York: Chapman & 

Hall; 1993.
 48. Román-Ponce SI, Samoré AB, Dolezal MA, Bagnato A, Meuwissen TH. 

Estimates of missing heritability for complex traits in Brown Swiss cattle. 
Genet Sel Evol. 2014;46:36.

 49. Habier D, Fernando RL, Garrick DJ. Genomic BLUP decoded: a look into 
the black box of genomic prediction. Genetics. 2013;194:597–607.

 50. Falconer D, Mackay T. Introduction to quantitative genetics. Harlow: 
Longman Group Ltd.; 1995.

 51. Vattikuti S, Guo J, Chow CC. Heritability and genetic correlations 
explained by common SNPs for metabolic syndrome traits. PLoS Genet. 
2012;8:e1002637.

 52. Stich B, Piepho HP, Schulz B, Melchinger A. Multi-trait association map-
ping in sugar beet (Beta vulgaris L.). Theor Appl Genet. 2008;117:947–54.


	A predictive assessment of genetic correlations between traits in chickens using markers
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Data
	Phenotype correction
	Genotyping
	Whole-genome prediction models
	Pedigree-based and whole-genome relationship matrices
	Model fitting and validation
	Realized versus expected genetic regressions between traits

	Results
	Heritability
	Genetic correlations
	Predictive ability
	Regression coefficients

	Discussion
	Conclusions
	Authors’ contributions
	References




