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SHORT COMMUNICATION

Quantifying genomic connectedness 
and prediction accuracy from additive 
and non-additive gene actions
Mehdi Momen1 and Gota Morota2* 

Abstract 

Background: Genetic connectedness is classically used as an indication of the risk associated with breeding value 
comparisons across management units because genetic evaluations based on best linear unbiased prediction rely for 
their success on sufficient linkage among different units. In the whole-genome prediction era, the concept of genetic 
connectedness can be extended to measure a connectedness level between reference and validation sets. However, 
little is known regarding (1) the impact of non-additive gene action on genomic connectedness measures and (2) the 
relationship between the estimated level of connectedness and prediction accuracy in the presence of non-additive 
genetic variation.

Results: We evaluated the extent to which non-additive kernel relationship matrices increase measures of connect-
edness and investigated its relationship with prediction accuracy in the cross-validation framework using best linear 
unbiased prediction and coefficients of determination. Simulated data assuming additive, dominance, and epistatic 
gene action scenarios and real swine data were analyzed. We found that the joint use of additive and non-additive 
genomic kernel relationship matrices or non-parametric relationship matrices led to increased capturing of connect-
edness, up to 25%, and improved prediction accuracies compared to those of baseline additive relationship counter-
parts in the presence of non-additive gene action.

Conclusions: Our findings showed that connectedness metrics can be extended to incorporate non-additive 
genetic variation of complex traits. Use of kernel relationship matrices designed to capture non-additive gene action 
increased measures of connectedness and improved whole-genome prediction accuracy, further broadening the 
scope of genomic connectedness studies.
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and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Genetic connectedness is used to evaluate the extent to 
which reliable comparisons of estimated breeding val-
ues can be safely performed across management units. 
The strength of genetic links or connectedness relies on 
the relatedness of individuals across management units 
[1]. In turn, genetic evaluations of managed populations 
such as livestock species rely for their success on suf-
ficient connectedness between different units. In such 
cases, best linear unbiased prediction (BLUP) provides 

fair ranking of the estimated breeding values of individu-
als while minimizing the risk of potential uncertainty in 
estimated breeding value comparisons [2–4]. The major-
ity of previous studies on connectedness were performed 
with regard to pedigree relatedness; however, Yu et al. [5] 
rekindled an interest in this area by evaluating the util-
ity of genome-based connectedness. Using real mice and 
cattle data, they reported that genomic relatedness ena-
bles the enhancement of genetic connectedness measures 
across management units compared to those obtained 
from pedigree relationships. This is mainly because 
genomic information captures relatedness between units 
that appears disconnected according to the pedigree. The 
utility of genomic connectedness was further investigated 
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by assessing whether the enhanced estimates of connect-
edness delivered by genomics also led to an increased 
accuracy of breeding value prediction [6]. It was found 
that the use of genomic relatedness yields increased 
measures of connectedness and improved prediction 
accuracies (PA) compared to those of pedigree-based 
models under a purely additive gene action mode when 
a sufficient number of single-nucleotide polymorphisms 
(SNPs) is present. This parallels the recent recognition of 
the impact of non-additive genetic variation marked by 
SNPs e.g. [7, 8]. By properly accounting for non-additive 
genetic variation, it is potentially possible to enhance 
(1) the accuracy of total genetic value prediction, (2) the 
accuracy of breeding value prediction by clearly sepa-
rating additive from non-additive genetic variation, and 
3) the efficiency of mate allocation procedures as well 
as crossbreeding or purebred selection schemes [9, 10]. 
However, the relationship between the estimated level of 
connectedness and PA in the presence of non-additive 
genetic variation is less well understood. Accordingly, the 
objective of the current study was to evaluate the interre-
lationship between the degree of genomic connectedness 
and genome-enabled PA by calculating connectedness 
statistics from either the joint use of additive and non-
additive genomic relationship matrices or non-paramet-
ric relationship matrices using simulated and real data, 
further broadening the scope of genomic connectedness 
studies.

Methods
Simulated data
A two-step simulation process was carried out using 
the QMSim software [11]. A historical population with 
1000 individuals was created at the initial generation, fol-
lowed by a sharp reduction in the population size owing 
to population bottleneck during generation 1 to 100. This 
resulted in the population size decreasing to 220 indi-
viduals in the last historical generation, creating initial 
linkage disequilibrium along with mutation and drift. 
The recent population was formed by randomly sampling 
200 females and 10 males from the last historical genera-
tion. The individuals were mated for the subsequent five 
generations with equal probability of males and females, 
producing a total of 2000 individuals with a structured 
pedigree for analysis.

The simulated genome consisted of 29 pairs of auto-
somes each 100 cM long. To mimic a commercial Bovine 
54K SNP chip, 1885 bi-allelic SNPs were equally distrib-
uted across each chromosome and each chromosome 
was assigned 65 quantitative trait loci (QTL). Phenotypes 
were simulated under three different gene action scenar-
ios: (1) additive and dominance (AD), (2) additive, domi-
nance, and epistasis (ADE), and (3) purely epistasis (PE). 

The simplest quantitative genetic model with main effects 
(additive and dominance) and epistasis constitutes a two-
allele two-locus model. Epistasis was simulated only 
between pairs of QTL including second order additive × 
dominance (A× D) interactions. Five QTL from the 65 on 
each chromosome (total of 145) were selected to create 
10,440 epistatic two-order interactions (145(145−1)/2 = 
10,440). The total effect of QTL pairs influencing a given 
trait was calculated as the sum of all effects using the fol-
lowing model:

Here, a, d, and ad are the additive, dominance, and epi-
static effects, respectively; Wa , Wd , and lk lk ′ are SNP 
codes for additive, dominance, and epistasis, respec-
tively; k denotes the kth QTL; and nQTL is the num-
ber of QTL (for the epistatic term, this is only summed 
over the epistatic QTL). The phenotypic value of each 
individual yi was created by adding a normally distrib-
uted residual ǫi ∼ N (0, σ 2

ǫ ) to the sum of genetic values. 
Additive effects were drawn from a Gamma distribu-
tion with shape and scale parameters equal to 0.42 and 
8.282, respectively [12]. Their effect signs were sam-
pled to be positive or negative with probability 0.5. The 
dominance effect for the kth QTL was determined as 
the product of the absolute value of the additive QTL 
effect and the degree of dominance dk = δk | ak | [13, 
14]. Here, δk is the degree of dominance sampled from 
a normal distribution with δk ∼ N (0, 1) . The epistatic 
effects were drawn from a normal distribution with 
N (0.02, σ 2 = 0.03) [14]. Additive and dominance com-
ponents were simulated for the AD scenario; additive, 
dominance, and epistatic components were included for 
the ADE scenario; and only epistasis was considered for 
the PE scenario. Two broad-sense heritability levels ( H2 ) 
equal to 0.4 and 0.8 were simulated, with the partitioning 
of variance components shown in Table 1. We considered 
phenotypic variance equal to unity and simulated genetic 
variance according to the proportion of phenotypic vari-
ance explained by additive, dominance, and epistatic 
QTL effects: σ 2

a =
∑

k 2pkqkα
2
k , σ 2

d =
∑

k [2pkqkdk ]
2 , 

and σ 2
ad = 2

∑

k

∑

k ′ p
2
kpk ′qk ′(αkdk ′)

2 , where 
α = [a+ d(q − p)]2 is the allele substitution effect, and p 
and q are minor and major allele frequencies, respectively 
[15, 16].

Real data
For real data analysis, publicly available PIC swine data 
was used [17]. We analyzed five traits, T1, T2, T3, T4, 

yi =

nQTL
∑

k=1

Wa ikak +

nQTL
∑

k=1

Wdikdk +

nQTL
∑

k=1

nQTL
∑

k ′=2

lk lk ′ad + ǫi.
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and T5, with the corresponding number of individu-
als equal to 2804, 2715, 3141, 3184, and 3184. Their 
heritability values were 0.03, 0.23, 0.20, 0.32, and 0.36, 
respectively. It has been shown that this dataset exhib-
its a small to moderate amount of dominance genomic 
variation [18, 19]. Therefore, this dataset was consid-
ered suitable to test the extent to which the use of a 
non-additive genomic kernel relationship matrix might 
increase the capturing of connectedness measures. 
After removing SNPs with a  minor allele frequency 
lower than 0.05, 52,842 SNPs remained for the analysis.

Management unit simulation
The management units were simulated according to the 
approach in Yu et al. [5] for simulated and real data. We 
clustered all individuals into management unit 1 (MU1) 
and management unit 2 (MU2) using the K-means clus-
tering algorithm applied to a numerator relationship 
matrix computed from pedigree data such that the over-
all level of relatedness between individuals in different 
management units is minimized. There was no exchange 
of individuals between MU1 and MU2 in scenario 1 (S1), 
which served as a least connected design. An additional 
five management unit scenarios (S2 to S6) were consid-
ered by exchanging 10, 20, 30, 40, and 50% of individuals 
between MU1 and MU2 as shown in Fig. 1.

Genomic relationship kernel matrix
Three types of genomic relationship kernel matrices ( K ) 
were used in the present study.

The additive genomic relationship matrix ( K = G ) 
was used to capture the pattern of additive inheritance 
G = WaW

′
a/2

∑m
k=1 pk(1− pk) , where Wa is the cen-

tered marker incidence matrix taking values of 0− 2pk 
for zero copies of the reference allele, 1− 2pk for one 
copy of the reference allele, and 2− 2pk for two copies of 
the reference allele [20]. Here, pk is the allele frequency 

at SNP k = 1, . . . ,m . The dominance genomic relation-
ship matrix ( K = D ) aimed at capturing dominance gene 
action D = WdW

′
d/

∑m
k=1(2pk(1− pk))

2 , where Wd is 
the dominance marker incidence matrix defined accord-
ing to Vitezica et  al. [21]. The additive by dominance 
genomic relationship matrix was constructed as G#D , 
where # denotes the Hadamard product [22].

Gaussian kernel
The Gaussian kernel ( K = GK ) is equivalent to modeling 
epistatic gene action up to an infinite order by taking the 
Hadamard product between G matrices when SNPs were 
coded in an additive manner [23]. It is also known as a 
space continuous version of the diffusion kernel, which 
is deployed on graphs [24]. The Gaussian kernel between 
a pair of individuals i and j with their genotype vectors 
wi ∈ (0, 1, 2) and wj ∈ (0, 1, 2) is given by:

where dij =
√

(wi1 − wj1)
2 + · · · + (wik − wjk )

2 + · · · + (wim − wjm)
2 

is the Euclidean distance and θ is the smoothing parame-
ter. Large θ leads to GK entries closer to 0 (i.e., local ker-
nel) and smaller θ produces entries closer to 1 (i.e., global 
kernel). Therefore, θ controls the extent of genomic simi-
larity between individuals.

Coefficient of determination
Consider a standard BLUP model, y = Xb+ Zu + ǫ , 
where y is the vector of the phenotypes, X and Z are the 
incidence matrices for systematic and random effects, 
respectively, b and u are the vectors of systematic effects 
and genetic values, and ǫ is the vector of residuals. By defin-
ing var(u) = Kσ 2

u we have:

where σ 2
u is the variance associated with a ker-

nel matrix K , V is the variance of y , and 
P = V−1 − V−1X(X′V−1X)−X′V−1 [25]. Recall that 
since cov(û,u′) = cov(u′, û) = var(û) , the prediction 
error variance (PEV) of u is given by:

GK(wi,wj) = exp(−θd2ij)

=

m
∏

k=1

exp(−θ(wik − wjk)
2),

BLUP(u) = σ 2
uKZ

′V−1(y − Xb̂)

= σ 2
uKZ

′Py

var(û) = σ 2
uKZ

′PZKσ 2
u

PEV = var(û − u)

= var(û)+ var(u)− 2cov(û,u′)

= var(u)− var(û)

= Kσ 2
u − σ 2

uKZ
′PZKσ 2

u ,

Table 1 Simulated heritability value for each gene action 
scenario

H
2 , h2

A
 , h2

D
 , and h2

E
 are broad-sense, additive, dominance, and epistatic 

heritabilities, respectively. Gene action scenarios AD, ADE, and PE denote 
additive and dominance, additive, dominance, and epistasis, and purely 
epistasis, respectively

H
2 Gene action h

2

A
h
2

D
h
2

E

0.4 AD 0.3 0.1 -

ADE 0.2 0.1 0.1

PE – – 0.4

0.8 AD 0.6 0.2 -

ADE 0.4 0.2 0.2

PE – – 0.8
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where K can be any positive (semi)definite relationship 
matrix between pairs of individuals discussed earlier.

The generalized coefficient of determination (CD), 
which is also known as the square of the correlation 
between the predicted and the true difference in the 
genetic values, was used to quantify connectedness. CD 
of the contrast between management units l and l′ con-
sisting of nl and nl′ individuals is given by [26, 27]:

where x is the contrast vector involving 1/nl , −1/nl′ and 
0 corresponding to individuals belonging to lth, l′th, and 
the remaining units. Here, the sum of contrast vector 

CD =
xll′var(û)xll′

xll′var(u)xll′

=
xll′ [var(u)− var(û − u)]xll′

xll′var(u)xll′

= 1−
xll′ [var(û − u)]xll′

xll′var(u)xll′
,

elements is zero. The greater the CD of contrast, the 
greater the connectedness. A large CD is expected when 
prediction error covariance in the numerator is large, 
reflecting errors that are  in the same direction between 
units. Alternatively, the measure of CD decreases when 
the relationship between individuals across units is large 
in the denominator. Therefore, the CD of contrast com-
bines the prediction error variance of the difference 
(PEVD) [2] and genetic variability. This metric was cho-
sen because it was found to represent the most stable 
connectedness metric in a recent study [5].

Connectedness measures and prediction accuracy
Measures of CD between MU1 and MU2 were inferred 
from estimated variance components followed by assess-
ing genomic PA by two-fold cross-validation using a 
BLUP type model. In the first fold, MU1 was treated as a 
training set and MU2 was treated as a testing set. This 
was reversed in the second fold such that MU2 was used 

Fig. 1 Simulated management units (MU). Scenario 1: Disconnected management units MU1 and MU2. Scenario 2: 10% of individuals were 
exchanged between MU1 and MU2. Scenario 3: 20% of individuals were exchanged between MU1 and MU2. Scenario 4: 30% of individuals were 
exchanged between MU1 and MU2. Scenario 5: 40% of individuals were exchanged between MU1 and MU2. Scenario 6: 50% of individuals were 
exchanged between MU1 and MU2
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to train the model and MU1 was used to test prediction 
performance. The multi-kernel G and D approach in the 
AD scenario, the multi-kernel G , D , and G#D approach in 
the ADE scenario, and the GK matrix in the PE scenario 
were benchmarked against the baseline G matrix (i.e., 
genomic BLUP). Note that the use of GK corresponds to 
fitting a reproducing kernel Hilbert spaces regression 
(e.g. [28]). For a multi-kernel approach, we weighted each 
kernel by its relative contribution to the marked total 
genetic variation, also known as kernel averaging or mul-
tiple kernel learning [29], to measure connectedness and 
assess PA. For instance, the kernel matrix 
K =

σ 2
g

σ 2
g +σ 2

d

G+
σ 2
d

σ 2
g +σ 2

d

D was used when G and D were fit-

ted together, where σ 2
g  and σ 2

d  were additive and domi-
nance genomic variances, respectively. PA was obtained 
as the correlation between true and predicted genetic 
values for the simulated data averaged across 10 repli-
cates (cor(g, ĝ )) and the correlation between phenotypes 
and predicted genetic values for the real data (cor(y, ĝ)).

Results
AD scenario
The relationships between CD and PA across the six 
management unit simulation scenarios (S1 to S6) are 
shown in Fig. 2. The joint fit of G and D kernel relation-
ship matrices was benchmarked using the G matrix 
alone. A sharp increase in PA was observed with the 
increasing proportion of exchanged individuals from S1 
to S3, which reached a plateau after 30% exchange rate 
between MU1 and MU2 in S4. Overall, PA improved as 
more individuals between MU1 and MU2 were shared. 
Higher PA values were achieved by accounting for 

dominance G+D compared to G alone for the two her-
itability levels considered (0.4 and 0.80). The lowest PA 
(0.368) was obtained in S1 with G and the highest PA 
(0.632) was obtained in S4 with G+D.

For the measures of connectedness, there was a good 
agreement between increasing the rate of exchange and 
stronger measures of connectedness up to S3. However, 
the estimates of CD increased up to scenario S3, fol-
lowed by a decrease from scenario S4 onward because 
CD penalizes connectedness measures when two units 
are genetically close. The results showed that estab-
lishing genetic links between management units by 
exchanging more individuals created more genetic sim-
ilarity on one side and reduced genetic variability on 
the other side, resulting in lower CD values. CD of con-
trast measured by G+D captured stronger connected-
ness than that of G consistently across all scenarios (S1 
to S6). The largest measured CD (0.989) was obtained 
with G+D in S3, and the smallest CD (0.64) was 
obtained with G in S6. Overall, accounting for domi-
nance variation increased PA and measures of CD. The 
relationship between PA and CD was positively associ-
ated up to S3; then, whereas PA continued to increase, 
CD began to level off.

ADE scenario
The results of PA and CD from the ADE scenario are 
shown in Fig.  3. We found that the overall pattern 
resembled that of the AD scenario. That is, with increas-
ing degree of similarity among management units, PA 
increased and then reached a plateau after S4. The high-
est PA (0.731) was obtained with G+D+G#D kernel 
matrices in S4 and the smallest PA (0.245) with G in S1. 

Fig. 2 Relationship between prediction accuracies (left panel) and connectedness measures (right panel) under an additive and dominance 
scenario. The magnitude of the relationship level was steadily increased from scenario 1 (S1) to scenario 6 (S6). G : additive genomic kernel 
relationship matrix. D : dominance genomic kernel relationship matrix. h2

AD
 : broad-sense heritability including additive and dominance variation
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The PA results suggested that increasing the number of 
linking individuals improves PA and the use of non-addi-
tive genomic relationship matrices simultaneously fur-
ther increased PA.

In comparison, measures of CD were strengthened 
with the increase of linking individuals up to S4, followed 
a decreasing tendency, similar to the pattern observed 
in the AD scenario. Improved capture of connectedness 
was achieved by explicitly accounting for additive, domi-
nance, and epistasis variations compared to additive only. 
The greatest and weakest measures of connectedness 
were observed with G+D+G#D (0.731) in S4 and with 
G (0.456) in S1, respectively.

PE scenario
Performance of GK and G was compared in the PE sce-
nario. We considered different values for the smooth-
ness parameter θ ranging from 0.22, 0.5, and 0.9 to 1.6. 
These θ values were chosen such that the averages of off-
diagonal elements corresponded to 0.8, 0.6, 0.4, and 0.2 
covering global to local kernels (Fig. 4). The relationship 
between PA and CD for GK and G is shown in Fig. 5. For 
H2 = 0.4 , the results from the PE scenario were similar 
to those of AD and ADE scenarios, showing a higher PA 
with an increasing number of linking individuals. A θ 
equal to 1.6 produced the highest overall PA. Altogether, 
these results demonstrate the usefulness of GK to cap-
ture information arising from non-additive genetic varia-
tion. The advantage of GK over G for PA was less obvious 
when heritability was high ( H2 = 0.8).

The right side panel in Fig. 5 illustrates how θ impacts 
the measures of connectedness under the PE scenario. 

For H2 = 0.40 , the largest CD value was obtained in S3 
with GK(θ) = 1.6 , and the smallest values were observed 
in S1 and S6 with GK(θ) = 0.22 . The connectedness 
measures from G were between these two extreme 
GK . Again, the highest PA was observed in S6 whereas 
the highest CD was observed in S3. This is because CD 
accounts for the reduction of connectedness owing to 
low genetic diversity [27]. A similar pattern was observed 
for H2 = 0.8 , highlighting that the utility of GK to cap-
ture connectedness under non-additive gene actions also 
holds for a highly heritable trait.

Real data
The results from real data are shown in Fig. 6. As more 
individuals between the two units were exchanged, PA 
increased across all traits until a maximum was reached 
whereas CD started to drop in S5. Fitting G and D simul-
taneously yielded better prediction in almost all cases 
and also captured greater amounts of connectedness than 
those of G alone. Traits with a higher heritability (e.g. T4 
and T5) presented higher PA and greater CD levels than 
those with a lower heritability (e.g. T1). The results from 
real data analysis corroborated the utility of the multi-
kernel approach from the simulation study.

Discussion
The assessment of genetic connectedness originated from 
testing the estimability of linear functions of fixed effects 
in n-way cross classifications to determine the absence or 
presence of connectedness [30, 31]. It was subsequently 
extended to the random effects framework [1] to quantify 

Fig. 3 Relationship between prediction accuracies (left panel) and connectedness measures (right panel) under an additive, dominance, and 
epistasis scenario. The magnitude of the relationship level was steadily increased from scenario 1 (S1) to scenario 6 (S6). G : additive genomic kernel 
relationship matrix. D : dominance genomic kernel relationship matrix. G× D : additive × dominance genomic kernel relationship matrix. h2

ADE
 : 

broad-sense heritability including additive, dominance, and epistatic variation
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the uncertainty associated with the accuracy of breed-
ing value comparisons involving different management 
units. In this sense, connectedness is a measure germane 
to the capability to have estimable comparisons [3]. In 
the genomics era, the concept of genetic connectedness 
offers insights on two aspects of the prediction of genetic 
values. The first is relevant to improving the quality of 
genomic breeding value comparisons [5, 32] whereas the 
other is related to improving the accuracy of genomic 
prediction [33]. Notably, it is possible to reconcile these 
two items by quantifying a genomic connectedness level 
between reference and validation sets in the whole-
genome prediction paradigm. Toward this end, Yu et al. 
[6] investigated the relationship between connectedness 
measures and PA using pedigree and genomic informa-
tion under an additive model.

Concurrently, it has been shown that whole-genome 
prediction models designed to capture non-additivity 
yield slightly to moderately higher PA than additive coun-
terparts when the underlying genetic architecture is gov-
erned by dominance or epistasis e.g. [28, 34]. Although 
the extent of non-additive genetic variance may not be 
big in general, this type of variance is particularly impor-
tant for fitness-related  traits [35]. These recent findings 
served as the impetus for the present study, extending the 
scope of connectedness applications by further consider-
ing non-additive genetic variation.

We observed that the inclusion of non-additive genetic 
relationship kernel matrices or non-parametric relation-
ship matrices in a BLUP type model increased PA as more 

individuals were exchanged between MU1 and MU2, and 
that this was associated with stronger measures of con-
nectedness up to S3 or S4. This reinforced the view that 
the commonly observed higher prediction performance 
in non-additive or non-parametric models in the pres-
ence of non-linear gene action is due to improved captur-
ing of connectedness between units. We also found that 
the choice of smoothness parameter θ not only influences 
PA but also the extent of CD. This indicates the impor-
tance of the smoothness parameter in evaluating PA and 
CD, especially when a complex trait is controlled by non-
additive gene actions. In general, our results showed that 
when the optimum θ is selected, PA and CD of GK will 
be better than those of G, and that even GK constructed 
from additive coding of SNPs only captures additive by 
additive epistasis theoretically [23]. We note that many 
studies have shown that PA decreases when the refer-
ence population has a lower relatedness to the validation 
population e.g. [36, 37]. This is equivalent to when two 
units exhibit weak connectedness. Use of connectedness 
thereby opens up the possibility for an alternative way to 
measure the strength of relationship between these two 
populations instead of using an average relationship.

Moreover, once the rate of exchange reached S3 or 
S4, the estimated level of CD gradually leveled off in all 
management unit simulation scenarios, contrary to PA. 
This is because when there are sufficient numbers of indi-
viduals linking MU1 and MU2, the denominator of CD 
becomes smaller thus increasing the second term, which 
in turn renders the CD of contrast to become small. This 

Fig. 4 Histogram of off-diagonal elements between individual i and j for the Gaussian kernel matrix GK(i, j) with different smoothness parameters θ 
= 1.6, 0.9, 0.5, and 0.22
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Fig. 5 Relationship between prediction accuracies (left panel) and connectedness measures (right panel) under a purely epistasis scenario. The 
magnitude of the relationship level was steadily increased from scenario 1 (S1) to scenario 6 (S6). GK : Gaussian kernel relationship matrix with the 
smoothness parameters θ = 1.6, 0.9, 0.5, and 0.22. G : additive genomic kernel relationship matrix. h2

PE
 : broad-sense heritability including epistatic 

variation

Fig. 6 Relationship between prediction accuracies (left panel) and connectedness measures (right panel) in the real swine data. The magnitude of 
the relationship level was steadily increased from scenario 1 (S1) to scenario 6 (S6). G : additive genomic kernel relationship matrix. D : dominance 
genomic kernel relationship matrix. T1 to T5 denote five different traits analyzed in this study
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agrees with the findings in other studies dealing with only 
additive genetic variation [5, 6]. Together, these find-
ings suggest that the use of CD holds great potential to 
identify an optimal breeding program design in terms 
of genetic diversity while maximizing PA, whereas other 
connectedness metrics such as PEVD aim at increas-
ing  PA regardless of how closely individuals between 
units become related [5]. Note that PA is one of the cri-
teria to determine the most appropriate model to fit (for 
example, G vs. G+D ). Once the model is chosen, CD can 
be used to identify an appropriate level of relatedness or 
diversity between two units while maintaining high PA.

Although we applied K-means clustering of a numera-
tor relationship matrix, the choice of K for clustering may 
impact our results. Thus, we further constructed man-
agement units based on clustering of G or G + D under 
the AD scenario. As shown in Figures  S1 and S2 (see 
Additional file 1: Figures S1 and S2), K-means clustering 
of G or G + D produced patterns of PA and CD that are 
similar to those generated using the numerator relation-
ship. We also repeated our analyses using forward vali-
dation rather than K-means clustering. We treated 1200 
individuals in generations 1 to 3 as the training set (MU1) 
and 800 individuals in generations 4 to 5 as the testing 
set (MU2) under the AD scenario. We found that using 
G+D yielded higher PA and greater amount of CD com-
pared to using G (Additional file 1: Figure S3).

The utility of genomic connectedness does not preclude 
its application in management units. For instance, con-
nectedness measured by CD is currently gaining recogni-
tion for training population formation in plant breeding 
[38]. We contend that the use of CD holds promise to 
tackle a multitude of challenges related to increasing 
genomic prediction while maintaining genetic diversity.

Conclusion
Here, the genetic connectedness metric, CD, was used to 
assess genomic connectedness measures between refer-
ence and validation sets in a whole-genome prediction 
framework using simulated and real data in the pres-
ence of non-additive gene action. Joint fitting of additive 
and non-additive genomic kernel relationship matri-
ces or non-parametric relationship matrices could yield 
enhanced capture of connectedness and improved PA 
compared to those obtained through baseline additive 
models. Our approach shows promise to measure con-
nectedness levels and investigate their relationship with 
genomic PA when the linear assumption of genotype-
phenotype mapping may not hold.

Additional file

Additional file 1: Figure S1. Relationship between prediction accuracies 
(left panel) and connectedness measures (right panel) under an additive 
and dominance scenario based on the K-means clustering using the 
genomic relationship matrix. The magnitude of the relationship level 
was steadily increased from scenario 1 (S1) to scenario 6 (S6). G : additive 
genomic kernel relationship matrix. D : dominance genomic kernel 
relationship matrix. h2AD : broad-sense heritability including additive 
and dominance variation. Figure S2. Relationship between prediction 
accuracies (left panel) and connectedness measures (right panel) under 
an additive and dominance scenario based on the K-means clustering 
using the multikernel genomic and dominance relationship matrix. The 
magnitude of the relationship level was steadily increased from scenario 
1 (S1) to scenario 6 (S6). G : additive genomic kernel relationship matrix. 
D : dominance genomic kernel relationship matrix. h2AD : broad-sense 
heritability including additive and dominance variation. Figure S3. Rela-
tionship between prediction accuracies (left panel) and connectedness 
measures (right panel) under an additive and dominance scenario based 
on forward validation. G : additive genomic kernel relationship matrix. D : 
dominance genomic kernel relationship matrix. h2 : heritability.
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